
Journal of Statistical Physics. VoL 79, Nos. 1/2, 1995 

Surface-Induced Finite-Size Effects for 
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We consider classical lattice models describing first-order phase transitions, and 
study the finite-size scaling of the magnetization and susceptibility. In order to 
model the effects of an actual surface in systems such as small magnetic clusters, 
we consider models with free boundary conditions. For a field-driven transition 
with two coexisting phases at the infinite-volume transition point h=h,  we 
prove that the low-temperature, finite-volume magnetization mrs,(L, h) per site 
in a cubic volume of size L d behaves like 

m++m_2 ~-~m+-m-tanh I - ~ - ~ L d ( h - h x ( L ) ) ] + O ( 1  I m r~( L, h ) 

where hx(L) is the position of the maximum of the (finite-volume) susceptibility 
and m• are the infinite-volume magnetizations at h = h , + 0  and h=h,-O, 
respectively. We show that hx(L ) is shifted by an amount proportional to IlL 
with respect to the infinite-volume transition point ht provided the surface free 
energies of the two phases at the transition point are different. This should be 
compared with the shift for periodic boundary conditions, which for an asym- 
metric transition with two coexisting phases is proportional only to 1/L 2a. 
One can consider also other definitions of f'mite-volume transition points, for 
example, the position hu(L) of the maximum of the so-called Binder cumulant 
Ufrcc(L, h). While hu(L) is again shifted by an amount proportional to IlL with 
respect to the infinite-volume transition point ht,  its shift with respect to hx(L ) 
is of the much smaller order IlL TM. We give explicit formulas for the propor- 
tionality factors, and show that, in the leading 1/L TM term, the relative shift is 
the same as that for periodic boundary conditions. 
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1. INTRODUCTION 

In the last 20 years, the study of finite-size (FS) effects near first- and second- 
order phase transitions has gained increasing interest. While the study of 
FS effects for second-order phase transitions goes back to the work of 
Fisher and coworkers in the early 1970s, cl6" 18, ~5~ finite-size effects for first- 
order phase transitions were first considered by Imry ~2~ and then by Fisher 
and Berker, ~17~ B16te and Nightingale, tl~ Binder and coworkers, (~'9' 13) 
Privman and Fisher, t22~ and others. 

Recently, these studies have been systematized in a rigorous frame- 
work by Borgs and Koteck~ ~6~ (see also refs. 7 and 8) and by Borgs and 
Imbrie. t4'5'2~ Their results cover both finite-size effects in cubic volumes 
and long cylinders, and both field- and temperature-driven transitions, but 
were always limited to periodic boundary conditions. While the periodic 
boundary conditions are natural for the description of computer experi- 
ments that are used to study the bulk properties of a system (note that 
periodic boundary conditions are used in these computer experiments 
because they minimize the unwanted finite-size effects), they do not allow 
for the description of FS effects in actual physical systems, e.g., small 
magnetic clusters, where surface effects are of major importance. 

In this paper we start a rigorous study of such surface effects. We 
consider spin systems in a finite box A = { 1 ..... L} d, imposing free or so- 
called "weak" boundary conditions (see Section 2) instead of the periodic 
boundary conditions used in our previous work. 

In order to explain our main ideas, let us first review the FSS for a 
system in a periodic box. c6-8~ For a system describing the coexistence of 
two phases, say an Ising magnet at low temperatures, the partition function 
with periodic boundary conditions can be approximated by 

Z p e r ( Z  , h) _~ Z+(L, h) + Z_(L, h) (1.1) 

where Z•  contain small perturbations of the ground-state configurations 
a a - - +  1 and a a - - -  1, respectively. The error terms coming from the 
tunneling configurations can be bounded by O(Lae-L/L~ -:'), where f (h )  
is the free energy of the system and Lo is a constant of the order of the 
infinite-volume correlation length. 

In the asymptotic (large-volume) behavior of log Z•  there should 
appear, in principle, volume, surface ..... and corner terms. A periodic box, 
however, has neither surface,.., nor edges or corners, and one obtains 

Z p e r ( L  , h) ~ e - f+(h )La  q- e - f - ( h )L a  

=2cosh(f+(h)~2f-(h) La)e-[f+t"'+f-(h']L~/2 (1.2) 
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where f§ and f_(h) are the (metastable) free energies of the plus and 
minus phases, respectively. Taylor expanding f+(h) around the transition 
point h,, and introducing the spontaneous magnetizations m• of the plus 
and minus phases at h,, one obtains the FSS of the magnetization 

mper(L , h)--L-ad log Zp~r(L, h)/dh 

in the form 

mPer(L'h)~m+ + m -  m + - m -  tanh[ m + - m -  1 = 2 + 2 ~ (h -h , )L  a (1.3) 

It describes the rounding of the infinite-volume transition in a region of 
width 

Ah ~ L-a (1.4) 

with a shift ht (L) -h  , that vanishes in the approximation (1.3). A more 
accurate calculation shows that, in fact, for a system describing the 
coexistence of two low-temperature phases at the infmite-volume transition 
point h, and with infinite-volume susceptibilities X• one has 

hz(L) - h, = 6(Z + -Z-_~ 3 L -aa + O(L -3d) 
(m+ --m 

(1.5) 

if hz(L) is defmed as the position of the maximum of the susceptibility in 
the volume L a. 

Turning to free boundary conditions, we again expand log Z• h) 
into volume-surface-...-corner terms. This time, however, the volume A has 
a boundary, and the expansion yields 

--log Z+(L, h) =f~)(h)Ld+ f(a+_ - ')(h)2dL d-I + O(L d-2) (1.6) 

wheref~)(h) = f+(h) are the (metastable) bulk free energies, whilef~-~)(h) 
are the (metastable) surface free energies of the plus and minus phases, 
respectively. As a consequence, (1.2) gets replaced by 

(1.7) 
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At this point, one major difference with respect to (1.2) appears: while the 
free energies f +  and f _  are equal at the transition point ht, the surface free 
energies are typically different at h, [obviously, there are systems for which 
~+ : = f ~ - l ~ ( h , )  and 3_ : = f ~ - ~ ( h , )  are equal, such as in the symmetric 
Ising model where 3+ = z_ by symmetry, but for asymmetric first-order 
transitions, this is typically not the case]. The leading terms in the expan- 
sion around h, then lead to the formula 

m~r~e(L,h)~m+ +m- m+-m- tanh  { m + - m -  } = 2 + 2 2 [(h -hx(L)]L a (1.8) 

Here 

m +  - m _  L + O  (1.9) 

which, for r_  ~ r+ ,  is now proportional to 1/L, while the width Ah of the 
transition is still proportional to L -a. 

In fact, a formula of the form (1.8) has already been given in ref. 23, 
with heuristic arguments very similar to those presented above. Here, our 
goal is twofold: first, we want to make the arguments leading to (1.8) 
rigorous, deriving at the same time precise error bounds on the subleading 
terms [in fact, our method allows one to calculate in a systematic way the 
corrections to (1.8) in terms of an infinite asymptotic series in powers 
of 1/L]. Second, we want to generalize these results to a wider class of 
situations, including, in particular, the finite-size scaling of expectation 
values of arbitrary local observables. 

It will turn out that the more precise analysis of the subleading terms 
reveals an interesting fact: if one considers other standard definitions of 
the finite-volume transition points, e.g., the position h v(L) of the maximum 
of the so-called Binder cumulant Urree(L, h), one fmds that all of them 
are shifted, with respect to the infinite-volume transition point ht, by an 
amount proportional to 1/L. Their mutual shifts, however, are of the much 
smaller order 1/L 2a, with proportionality factors that are the same as those 
for the corresponding shifts with periodic boundary conditions; see 
Section 2 for the precise statements. 

The finite-size scaling of local observables, on the other hand, will lead 
to the construction of certain "metastable" states (.)J~: and their finite- 
volume analogs ( .  ~, L, J, such that 

/ : : t :  ' 

L h A+(L)+A_(L) A+(L)-A_(L) 
( A )  rr~e ~ 2 -t 2 

xtanh {m" t  110, 
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A iL,h 
1 / free 

L h  

h 

L h  (A3)f,;, 

Fig. I.  Fini te-s ize  sca l ing  o f  th ree  different  obse rvab le s .  

Here A + (L) = ( A ) ~ h, differ from the corresponding infinite-volume expec- 
tation values A• = (A) ;~  by an amount which is exponentially small in 
the distance dist(supp A, aA); see Theorem 3.2 in Section 3.4 for the precise 
statement in the more general context of N-phase coexistence. Note that 
the argument of the hyperbolic tangent in (1.10) is the same as in (1.9), and 
is independent of the particular choice for A. Thus the finite-size scaling of 
all local observables is synchronized in the sense that, after subtracting the 
"offset" [A+(L)-A_(L)]/2, the functions / , t \ s  asymptotically only \ ,A / free 
differ by a constant factor; see Fig. l. 

The organization of the paper is as follows: in the next section we 
present, in Theorem A, our main results for the finite-size scaling of the 
magnetization and susceptibility in the context of a field-driven transition 
with two coexisting phases. Section 3 is devoted to the contour repre- 
sentation of the models considered in Section 2, together with our main 
assumptions and results for a more abstract class of models describing the 
coexistence of N phases. We state two main theorems concerning the finite- 
size scaling: Theorem 3.1 on partition functions and other thermodynamic 
quantities, and Theorem 3.2 on the finite-size scaling of local observables. 
In Section 4 we construct suitable metastable free energies and prove 
Theorem 3.1, deferring the technical details to the appendices. In Section 5 
we construct metastable states and prove the corresponding theorem, 
Theorem 3.2. In Section 6 we prove the results stated in Section 2, using 
the abstract results formulated in Section 3. 

2. FIELD-DRIVEN TRANSIT IONS 

2.1. Def ini t ion of the Model  

In order to explain our main ideas, we consider an asymmetric version 
of the Ising model. Working on a finite lattice A = { 1  ..... L} a, d>~2, 

822/79,/I-2-4 
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we consider configurations a A : i ~ a i ~  { - 1 ,  1} and the reduced 
Hamiltonian 

J 
n ( a ~ ) = ~  Y' ]rr,-ajl2-h Y. a~+ ~ xA ]-I ai (2.1) 

( i j ) ~ A  i ~ A  A = A  i ~ A  

where J is the reduced coupling (containing a factor ] /=  1/kB T), the first 
sum goes over nearest neighbor pairs ( / j ) ,  while the third one is a finite- 
range (i.e., XA = 0 for diam A < R, where R < oo) perturbation with trans- 
lation-invariant coupling constants xa ~ •. While the first two terms in 
(2.1) describe the standard Ising model, the third term is a perturbation 
that may break the + / -  symmetry of the Ising model. We will assume 
that it is small in the sense that 

ILK[, = A: 0~ ,4 ]~AII <~b~ 

where bo > 0 is a constant to be specified in Theorem A below. 
The partition function with free boundary conditions is 

Zrr~(L, h) = ~ e-nt~A) (2.2) 
aA 

The derivatives of its logarithm define the corresponding magnetization 

d d 
mrre~(L, h ) = L -  ~ l o g  Zrrr h) (2.3) 

and the susceptibility 
d 

Xr~,(L, h) = ~ mf~(L,  h) (2.4) 

The Binder cumulant Ur~o~( L, h) is given as 

( M 4 ) c  3 ( ( M -  ( M ) ) 2 )  2 -  ( ( M -  ( M ) ) ' )  
Urree(t , h) --- 3(MZ) z - 3 ( ( M -  (M))Z)  2 (2.5) 

where ( . )  denotes expectations with respect to the Gibbs measure corre- 
sponding to (2.1), ( . ) ~  denotes the corresponding truncated expectation 
values, and M=Y.~,Aa~. Note that Ur~e~(L,h)<~2/3 by the inequality 
( F  2) >_, ( F )  z [applied to F =  ( M -  ( M ) ) 2 ] .  

2.2. Heuristic Background, Main Ideas 

For low temperatures (i.e., large J), the leading contributions to the 
partition function come from the constant ground-state configurations 
aA = - 1 and rr A = + 1. In this approximation, 

Zfree(L , h) ~ e -~+(L" h) + e-~_(L,h) (2.6) 
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where 

E• h) = ~ e+(i) (2.7) 
i ~ A  

with the position-dependent "ground-state energies" 

ctl,4I 
e,(i) = ~ ~A " ~ - -  h~x, ~ = _+ 1 (2.8) 

A ~ . A : i E A  

In the same approximation, the magnetization rnfroe(L, h) and susceptibility 
Zrr~(L, h) are given by 

mrr~r h )-~tanh ( E-(L '  h ) -  E +(L' h) (2.9) 

and 

Xfrce(L, h) ~- L a cosh-2 (E_(L,  h) - E+(L, 2- h)) (2.10) 

Observing that e~,(i) differs from the bulk value e, if i is in the vicinity 
of OA, we expand E+_(L, h) into a bulk t e r m  e+L d plus boundary terms, 

E+_(L,h)=e+(h)La+e~-t)(h)2dLd-l +O(La-2) (2.11) 

While, still within the approximation by ground states, the bulk transition 
point ho is the value of h at which e+(h)= e_(h), the finite-volume tran- 
sition point ho(L) corresponds to the equality of E+(L, h) and E ( L ,  h). 
By (2.11), this leads to a shift 

ho(L ) - h o = O(l/L) (2.12) 

Notice that for periodic boundary conditions we get ho(L ) =ho for zero 
temperature and, for nonvanishing temperatures, a shift ho(L) -ho  propor- 
tional to 1/L 2d for periodic b.c. c6' 7) 

In order to make the above considerations rigorous, one has to take 
into account the excitations around the two ground states o-,~ - + 1. This 
is done in Sections 3 and 4 and leads to a representation 

Zf~ee(L, h)=(e--F+(L'h) +e--F-IL'h))[l + O(Lde-L/t'~ (2.13) 

where L o is a constant of the order of the infinite-volume correlation length 
and F+ (L, h) have an asymptotic expansion similar to (2.11), namely 

F+(L, h) =f+(h)La+ fta+_ - l)(h)2dLa-~ + O(L a-2) (2.14) 

where f+(h) are metastable free energies and f~ - l ) (h )  are (metastable) 
surface free energies. Once these results (see Theorem 3.1 in Section 3 
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for the precise statements)  are proven,  we obtain the desired f'mite-size 
scaling results by a rigorous version of the method  presented in the 
introduction. 

2.3. Statements  of Results 

In order to state our results in the form of a theorem, we introduce, 
for h 4= h,, the free energy 

f ( h )  ~ f (d ) (h )  = -- lim L - a l o g  Zfree(L , h) (2.15a) 
L ~ o o  

the surface free energy 

1 
f (d-~)(h)  = -- lim ~ [ log Zrree(L, h) + Ldf(h)]  (2.15b) 

L --, oo 2 d L  a -  i 

.... the corner free energy 

f ( ~  lim 1 z ~  o~ 2-~ [ log Zfree(L , h) + Laf(h) + .. .  + 2 a-  ldLf(t)(h)] 

(2.15c) 

as well as single-phase magnet izat ions m •  and surface free energies r •  at 
the transition point  h,, 

d h,+o m+ = - - ~  f ( h )  (2.16) 

r •  = f ( d - -  I)(h t q.. 0) (2.17) 

We also recall that  Ilxll was defined as 

[KAI 
Ilxll---- Y. IAI 

A : 0 ~ A  

Theorem A. Finite-Size Sealing of m and X. Consider a 
perturbed Ising model  with a per turbat ion of the form (2.1), with trans- 
lat ion-invariant coupling constants x~ with range R < oo. Then there are 
constants J o < o O  and b o > 0  such that, for IlxlL<boJ and J > J o ,  the 
following statements are true. Let 

A F ( L )  = f ( d -  l)(h ' + O)2dL a-  1 + . . .  + ftO)(h t + 0)2 a 

-- f ( d - 1 ) ( h t - - O ) 2 d L d - t  . . . . .  f t ~  (2.18) 
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and define hx(L ) and he(L) as the points where the susceptibility Xrree(L, h) 
and the Binder cumulant Ur,,eo(L, h) are maximal. Then 3 

mfreo(L'h)=m++m- m + - m - 2  t- 2 t a n h { m + - m - [ h - h x ( L ) ] L d } 2  

+ O ((1 +~ -]K]I )- ) (2.19) 

and 

+ O((1 + IIKII)L d- ') 

provided Ih -hx(L)l <~ O((1 + II~cll)Z-1). 
In addition, for AF(L)# O, the shift hx(L) obeys the bound 

hx(L)=h,4 _ L a  1 + 0  (2,21a) 
m+ --m 

In the leading order, the shift of the point he(L) with respect to h, is the 
same, 

) 
[h -- hx(L  ) ] La) L d 

.(2.20) 

m+--'---m_/~a 1 + O (2.21b) 

Remarks. (i) If v+ ~ v _ ,  Eq. (2.21a) [and similarly for (2.21b)] 
can be simplified to 

hx(L)=h, + 1 + 0 
m + - m _  L 

yielding a shift ~ 1/L which is much larger than the width of the rounding, 
which, according to (2.19) and (2.20), is of the order 1/L d. 

(ii) If it is interesting to consider the mutual shift hx(L)-he(L ). 
While both hx(L)-h  , and he (L ) -h ,  are of the order l/L, their mutual 
shift is actually much smaller, namely 

hx(L) -he (L)=2  (m+~_-~__m_)3-s L,--gg;- r (2.22) 

3 Here and in the following, O(L ~') stands for an error term which can be bounded by KU', 
with a constant K that does not depend on h, J, and K, as long as J>Jo and II•l] <bo.L 
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It is interesting to notice that, in the leading order 1/L TM, this mutual 
shift is exactly the same as the corresponding shift for periodic boundary 
conditions. 

(iii) We stress that the condition Ih-hz(L)l ~<O((1 + Ilxll)L 1) is 
not a very serious restriction in our context, because the width of the tran- 
sition in the volume L a is only proportional to L -a. In fact, in Section 6 
we will close the gap left in Theorem A by showing that for 

4d 
Ih-hz(Z) I > (1 + [IKII)L -1 

m+ - m _  

one has 

Imt~ee(L, h) - rn(h)l ~< O(1/L) (2.23) 

and 

IXrre,(L, h ) -Y(h) l  ~< O(1/L) (2.24) 

where m(h) and x(h) are the infinite-volume magnetization and suscep- 
tibility, respectively, of the model (2.1). 

(iv) Notice that, for periodic boundary conditions, it is possible to 
define finite-size transition points h,(L) with exponentially small shift, for 
example, the point where mper(L,h)=mp~r(2L, h). Here, all these defini- 
tions lead to a shift ~ 1/L yielding no qualitative improvement with respect 
to the point hz(L) or he,(L). 

(v) In principle, the coefficients m+,  r+ ..... can be calculated up 
to arbitrary precision using standard series expansions, provided the 
microscopic Hamiltonian is known. On the other hand, the scaling 
(2.19)-(2.21) would allow one, in principle, to obtain the coefficients m§ 
m_ ,  and the difference r + -  r_  from experimental measurements. 

(vi) The general context considered in Section 3 allows one to 
analyze the finite-size scaling with more general boundary conditions than 
the free boundary conditions considered here, including, in particular, 
small applied boundary fields favoring one of the two phases near the 
boundary. In order to apply the techniques developed in this paper, it is 
necessary, however, to exclude boundary conditions which strongly favor 
one of the two phases. Such a condition is needed to ensure that the main 
contributions to the partition functions do in fact come from small pertur- 
bations of the two ground states era = + 1. For large boundary fields, the 
boundary may strongly favor one of the two phases. The leading contribu- 
tions to the partition function then would include configurations which are 
in one phase near the boundary, and in the other one for the bulk. In such 
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situations, wetting and roughening effects of  the contour  separating the 
boundary  phase from the bulk phase would be important  physical effects. 
We are not  at tempting to study these effects in the present paper. 

3. GENERAL SETTING A N D  M A I N  T H E O R E M  

3.1. Contour Representat ion of the Ising Model  

In this section we review the contour  representation for the model 
(2.1). To make this subsection as simple as possible, and to have a concrete 
example at hand, we use for illustration the simplest symmetry-breaking 
term, namely a perturbation of  the form 

x Y' aiaia k (2.1') 
<ijk>~A 

where the sum goes over all triangles <t)'k> made out of  two nearest 
neighbor bonds </j)  and <jk) .  See refs. 24 and 25 for the contour  
representation for the more general model (2.1). It will be convenient to 
introduce, in addition to the finite lattice A = { 1  ..... L} a, the subset 
V = [  ~ ~]~ R ~ ~, L + -  of which is obtained from A as the union of all closed 
unit cubes c~ with centers i e A. For  a given configuration aA c { - 1, 1 } A, 
we then introduce the set c3 as the boundary  between the region V§ c V 
where ai= + 1 and the region V_ c V where a~= - 1, and the contours 
Yl ..... Y,, corresponding to aA as the connected components  of  O. 

To be more precise, we define an elementary cube as a closed unit cube 
with a center in A (we sometimes use the symbol c~ to denote an elemen- 
tary cube with center i e A), and introduce V+ as the union of all closed 
elementary cubes c; for which a~= ___ 1, respectively. The set O is then 
defined as V+ n V_,  and the "ground-state regions" V_+ are defined as 
V• With these definitions, the partition function with Hamiltonian 
(2.1') can be rewritten in the form 

Zfroo(L, h) =Y~ y'  e -'~ 
a o.4 

where the second sum is over all configurations consistent with a. 
In order to specify the configuration aA, one has to decide which 

component  of  v \ a  corresponds to ai = + 1 and which one to a i =  - 1. To 
this end, we introduce contours  with labels. Given a configuration aA, the 
contours  corresponding to aA are defined as pairs Y = ( s u p p  Y, 0r 
where supp Y is a connected component  of O, while ct is an assignment of 
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a label e(c) ~ { - I, + 1 } to each elementary cube that  touches supp y.4 It  
is chosen in such a way that  ~(c ; )=g~.  Note  that  the labels of  contours  
corresponding to a configuration aA are matching in the sense that  the 
labels oc(c) are constants  on every componen t  of  V\O. 

In fact, a set of contours  { Yt,..., II,} corresponds to a configuration 
aA if and only if: 

(i) supp Y ; n s u p p  Y j = 2 I  for i # j a n d  

(ii) the labels of  Y1 ..... Y, are matching. 

We call a set of  contours  obeying (i) a set of nonoverlapping contours 
and a set of  contours  obeying (i) and (ii) a set of nonoverlapping contours 
with matching labels, or sometimes just a set of matching contours. 

In order to rewrite Zrr,~(L, h) in terms of contours,  we assign a weight 
p(Y) to each contour.  This is done in such a way that  

c-'q<'~A) =e-E'+(V+)e-e-cv-) f i  P( trk) (3.1) 
k = l  

Here H(aA) is the Hami l ton ian  (2.1'), Yl ..... Y,, are the contours  corre- 
sponding to cry, and 

E_+(V:~) = ~ e+(i) (3.2) 
i ~ A  ~ V •  

For  the s tandard Ising model,  p ( Y ) = e  - s t n ,  where III[ is the number  
of  elementary ( d - 1 ) - d i m e n s i o n a l  faces in supp Y. The third term in 
(2.1'), however,  introduces corrections yielding a weight of the form 
p(Y) = e - a  I rl + o(,- I rl). As a consequence, 

Ip(Y)l ~<e - ~ l n  with r = J - O ( x )  (3.3) 

Similar bounds hold for the derivatives Idkp( Y)/dhl"}. 
With the help of  (3.1), we rewrite the parti t ion function Zr.,.r h) as 

h 

Zr~..(L,h)= ~ e-JZ+~V+~e-L(v-I I-[ P(YI,) (3.4) 
{ Y t  ..... Y . }  k ~ l 

where the sum goes over all sets of  matching contours  in K 

4 In the language of ref. 19, supp Y is called a (geometric) contour, while Y is called a labeled 
contour, 
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3.2. Assumptions for the General Model 
In Section 3.3 below, we will state our main theorem, Theorem 3.1, 

from which we infer Theorem A of the preceding section. The setting of 
Theorem 3.1 is actually more general than what is needed for Theorem A 
and will include more general models. On one hand, we introduce contours 
in such a way that the notion of contours covers the Ising contours intro- 
duced above as well as thick Pirogov-Sinai contours (24-26) constructed 
as unions of elementary cubes. 5 On the other hand, we also consider the 
situation of general N-phase coexistence. 

As before, we consider the finite lattice A c 7/d, d~> 2, and the corre- 
sponding volume V c R a. We introduce the set cg of elementary cells as the 
set of all elementary cubes in V, all closed (d-1) -d imens iona l  faces of 
these cubes ..... and all closed edges of these cubes. As usual, we define the 
boundary OW of a set W =  V as the set of all points x which have distance 
zero from both W a n d  W c and i f ' a s  WwOW. 

A contour in V is then a pair Y=  (supp Y, 0~(. )) where supp Y is a 
connected union of elementary cells and c~(.) is an assignment of a label 
~(c) from a finite set { 1 ..... N} to each elementary cube c in V\supp Y 
which touches Y [by touching we mean that c n s u p p  Y ~ ,  while 
(c\Oc) c~ supp Y= ~ ] .  As before, we require that 0t is constant on each 
component C of V\supp Y, and say that a set { Y1 ..... Y,,} of contours 
is a set of matching contours (or, more explicitly, a set of nonoverlapping 
contours with matching labels) iff: 

(i) supp Y;c~supp Yj : / :~  for i ~ j a n d  

(ii) the labels of Yl ..... Y, are matching in the sense that they are 
constant on components of V\(supp Y] w ... w supp Y,). 

In this way, each component C of V\(supp Y~ w .-- w supp 1I,) has 
constant boundary conditions on OC\OV. The partition function of a 
statistical model with "weak" boundary conditions is then rewritten in 
terms of contours as 

N 

Z(V,h)= Z f i  P(Yk) I-I e-E"(v"') (3.5) 
{ Y I  . . . . .  Y , , }  k = I n ,  = I 

where the sum goes over sets of matching contours in V (including the 
empty set of contours), and V., is the union of all components of 
V\(supp Yl w .-. w supp Y.) that have boundary condition m, and 

E,,,(V,,,)= ~. e,,(c) (3.6) 
c c ~ n  

5 The  c o n t o u r s  are  i n t roduced  in such a w a y  tha t  the more  genera l  cases cons idered  in refs. 11 

a n d  19 are  covered  as well. 
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We point  out  that  the sum in (3.6) goes over all e lementary  cubes in the 
closure V,, of I'm, a convent ion which was chosen to ensure that  all 
e lementary  cubes c with center in Vm are taken into account.  6 Note  that  
by our  definit ion of  V as a closed subset of  R d, the sum (3.5) contains  
contours  that  touch OV (in the sequel, we call these contours  boundary 
contours) and contours  that  do  not  touch OV (ordinary contours). The 
cont r ibut ion  of  the collection of  empty  contours  to (3.5) is actual ly  a sum 
of  N terms, ~ , ,  e -  E.,I v~ 

In the equalit ies (3.5) and  (3.6) we have in t roduced "contour  weights" 
p(Y) e R and "ground-s ta te  energies" era(c)E R that  depend on a vector  
pa ramete r  h e qg, where q/ is an open subset of  R~. We assume that  p(Y)  
and era(c) are t ransla t ion invar iant  as long as Y and c do not  touch the 
bounda ry  of  V. More  generally, we assume t ransla t ion invariance a long a 
( d - k ) - d i m e n s i o n a l  face in OV as long as Y (or c) does not  touch the 
[ ( d - k )  - 1 ] -d imensional  bounda ry  of  this face. 

As usual,  we have to assume a Peierls condition, together  with several 
assumpt ions  on the ground-s ta te  energies e,~(c). Here,  we assume that  
e,,(c) and p(Y)  are C 6 functions of  h obeying the following bounds:  

I p ( 1 O l  ~ < e  - ~  I rl  - e'~ v~ (3.7) 

dkp( Y) 
dh k <~ Ikl! (Co IY]) Ikl e -~ IrI-E~ r3 (3.8) 

and 

dke,,(c) 
dh k ~ CL kl (3.9) 

Here 3 > 0  is a sufficiently large constant ,  I YI denotes the number  of  
e lementary  cells in 7 supp Y, 

Eo(Y) = ~, eo(C) with eo(c)=mine,,,(c) (3.10) 
m 

c ~ s u p p  Y 

k is a mult i - index k = (k~)~= l ...... with 1 ~< Ikl ~< 6, Ikl = ~ k~, and Co is a 
constant  independent  of h and r. In addi t ion ,  we assume that  the difference 
between e,,(c) and the bulk term e,, is bounded,  

Lem(c) -- e,,, I ~< yr (3.1 1 ) 

~A sum over elementary cubes c c V,. would exclude those elementary cubes c ~ f),,, which 
touch one of the contours Y~ ..... Y,,. 

7 Here. a k-dimensional cell c in supp Y is only counted if there is no (k+ 1 )-dimensional cell 
c' in supp Y with c ~ c'. 
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with a constant 0 < y < 1 to be specified later. This condition is introduced to 
avoid a situation where free b.c. strongly favor cetain phases n e { 1 ..... N}. 
Note that 

le,,(c) - e,, I ~< Ilxll 

for the asymmetric Ising model (2.1). For this model, the condition (3.11) 
is therefore satisfied once Ilxll <~ boJ for a suitable constant 0 < bo < oo. 

3.3. Main Theorem 

In this section we state our main result for the general model intro- 
duced in the last section. It actually generalizes Theorem A presented in 
Section 2 to a large class of models describing the coexistence of N phases. 
As in Section 2, the leading contribution to the partition function Z( V, h) 
is the sum 

exp{-~=ze,,,(c) } (3.12) 
m =  1 

Introducing [Sk V[ as the joint k-dimensional area of all k-dimensional faces 
of V and ~�91 as solutions of equations 

m 

~(d-kk)e~"'-e,,,(c),,,, - k = d - 1  ..... 0 (3.13) 
/S = k  

whenever c is touching a k-dimensional face of V and not touching its 
( k -  1)-dimensional boundary, 8 we rewrite 

o(o110o VI e,,,(c)=e,, IV[ + e~(d-]l,,, [Od--i VI + "'" +~,, 
C c l "  

(3.14) 

To see that (3.13) implies (3.14), just notice that a hypercube c touching a 
k-dimensional face of V and not touching its ( k -  1 )-dimensional boundary 
is touching d-k (,,-k) different n-dimensional faces of a V. Each of these faces is 
specified by choosing n - k  directions among d - k  directions orthogonal to 
the concerned k-dimensional face. 

As usual we define the bulk free energy f(h) by 

- 1 "  1 f ( h ) =  v~mlv---~llOgZ(V,h) (3.15) 

8 Note that due to the translation invariance properties of e,,,(c), the right-hand side of this 
equation is constant for all such elementary cubes c. 
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and the magnetization m( V, h) = (m.( V, h))~= 1 ...... by 

1 d 
m( V, h) = ~ ~ log Z( V, h) (3.16) 

T h e o r e m  3.1. There exist constants b > 0 ,  yo>0,  and to<Or  
[where b and 70 depend on d and ro depends on d, N, and the constant Co 
introduced in (3.8) and (3.9)], as well as m'etastable free energies f,,,(h), 
surface free energies ..',nf(d--I)(h" I,..,,..., edge free energies f~l,)(h), and corner free 
energies f~)(h), such that the following statements are true provided the 
effective decay constant g, 

f := r( 1 - 7/70) - ro > 0 (3.17) 

[for the definition of z and 7 see (3.7), (3.8), and (3.11)]: 

(i) f (h)  = min,, f,,,(h). 
(ii) f , ,  and f " )  l = d - 1  ..... O, are six-times differentiable functions J m  

of h. 

(iii) I f  Ikl < 6, then 

~ ( f , , , - e , , ) < < . e  -b~ and f f ~ h k ( f " ~ ' " ' [  " . a m  - -  C m  ) ~ e - - b r  

where 1 = d -  1 ..... O. 

(iv) Let 

F,,(V, h)=f, , ,(h)IVI +f,,, 'a-')(h) IO~_l Vl + .-- +f '~ . . . . .  IO0Vl (3.18) 

Then 

Z ( V , h ) -  ~ e -F''(v'h) 
m = 1 

provided 0 ~< Ikl ~< 6. 

(v) 

V, h) < l V l  I*1 + '  O(e-b~L) m a x e  -r '"  (3.19) 
m 

Let 0 ~< Ik[ ~< 5 and define Pq a s  

Then 

IN ] Pq= Z e-F"11";h) 
r t 1 ~  I 

--1 
e - - F q (  r', h) 

q=lT- ~ dh~, 

(3.20) 

(3.21) 
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Here, as in the rest of this paper, O(x) stands for a bound const, x, 
where the constant depends only on d, N, and the constant Co introduced 
in (3.8) and (3.9). 

Theorem 3.1 is the main theorem of this paper. Its proof has three 
major parts: the geometric analysis of contours touching the boundary, a 
decomposition of Z( V, h) into pure phase partition functions, and the 
construction of metastable contour models allowing one to prove the 
bounds (3.19) and (3.21). Deferring the technical details to the appendices, 
we present the main steps of this proof in Section 4. 

3.4. FSS for Local Observables 

In addition to the FSS of thermodynamic quantities such as the magne- 
tization or susceptibility, we want to study the FSS of local observables. In 
order to state our results in the context of the general models considered 
in Section 3.2, we introduce the following notation. An observable A is a 
function which associates to each configuration contributing to (3.5) a real 
number A( Y~ ..... Y,). Its expectation value in the volume V is defined as 

1 
(A)J~=Z(- V, h) Z(AI V, h) (3.22) 

where 

f i  N Z(AIV, h)= ~., A(Y~,..., Y,,) P(Yk) ]-I e-e'~v') (3.23) 
{ v l  . . . . .  Y , , }  k = l m = 1 

As in (3.5), the sum in (3.23) goes over sets of matching contours in V, and 
V,, is the union of all components of V\(supp Y~ w ... u supp Y,,) that 
have the boundary condition m. 

An observable A is called a local observable if there is a finite set of 
elementary cubes, denoted supp A in the sequel, such that A( Yt ..... Y,) does 
not depend on those contours Yi for which supp A c~ (supp Yi w Int Yi) 
= ~ ,  where Int Yi is the interior of Y; (for the precise definition of Int Yg 
see Section 4.1 below). 

In most alSplications, local observables will be bounded, in the sense 
that the norm 

[[A[[ = sup [A(Y~ ..... Y,)[ (3.24) 
{r~ ..... r,I 
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is finite. In addition, the observable will either not depend on the vector 
parameter  h at all, or obey bounds of the form 

dThk A( Y,,) Y~ ..... ~< Ikl! CA(Co Isupp AI) Ikl (3.25a) 

where Co is the constant  introduced in (3.8), CA is a constant,  and k is a 
multi-index of order 0 ~< Ikl <~ 6. 

Here, we will allow for a slightly more  general situation, requiring 
only that  

j = l  

~< Ikl! CA(Co Isupp YAI) Lkl ~ e -rt~M-E~ (3.25b) 
j = l  

where supp YA stands for the set supp A u supp Y~ u -.. u supp Y,,, k is a 
multi-index of the order 0 ~< Jkl ~< 6, Co is the constant  introduced in (3.8), 
and C A is a constant  that  is finite 9 for all h and r. Assuming this condi- 
tion ~~ and the conditions introduced in Section 3.2, we will be able to 
prove the following theorem. 

T h e o r e m  3.2.  There are "metastable  expectation functionals" 
( . > h  , v. q q = 1 ..... N, such that  the following statements are true provided 
the effective decay constant  f := z ( 1 -  Y/Y0)- ro defined in Theorem 3.1 is 
positive and 0 ~< Ikl ~< 6: 

For  each local observable obeying the bounds (3.25a) or (3.25b), (i) 
one has 

h C A e o(e) Isupp A l O ( e  -- b?L) --~ (a) l~.  - ~., ( a )  v. qeq <~ (3 .26 )  
q ~ l  

where the probabili t ies Pq and the constant  b are as in Theorem 3.1 and 
8 : e -  .~/2. 

(ii) For  each local observable obeying the bounds (3.25a) or (3.25b), 
the limits 

( A > ~ =  lim <A>;~,q (3.27) 
.~'~ ~[d 

9 While we assumed that the constant C O is independent of h and r, we do not require that 
CA is independent of h and r. 

to Note that (3.7), (3.8), and (3,25a) imply the bound (3.25b). 
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exist as C 6 functions of h, and obey the bounds 

( A )  ~<O(1) C A IsuppAIIkle ~ (3.28) 

where e = e-e/2. 

(iii) For each local observable obeying the 
(3.25b), one has 

[ h h ( A ) q - - ( A ) v , q ]  

~< CA [supp AI Ikl e~ -bedist(suppA'Ov3) (3.29) 

where e = e-~/2. 

Proof. The proof of Theorem 3.2 is given in Section 5. 

bounds (3.25a) or 

4. PROOF OF THEOREM 3.1 

The proof of Theorem 3.1 has three major parts: the geometric 
analysis of contours, in particular a bound of the form 

Nov(Int Y) <~ const [YI 

where Nov(Int Y) denotes the number of elementary cubes in H Int Y that 
touch the boundary OV of V, the decomposition of Z( V, h) into pure phase 
partition functions Z~( V, h) ..... Zu(V, h), and the construction of suitable 
metastable free energies f~ ..... f,,. Deferring the technical details to the 
appendices, we present the main steps in the following subsections. 

4.1. The Geometry  of Contours 

An important notion in the Pirogov-Sinai theory of contour models is 
the notion of the interior and exterior of a contour. For ordinary contours 
Y= (supp Y, a(-)), one defines Int Y as the union of all finite components 
of Nd\supp Y and Int,, Y as the union of all components of Int Y which 
have the boundary condition m. Since ordinary contours do not touch the 
boundary OV of V, the set Ext Y= V\(supp Y u  Int Y) is a connected set 
and c((c) is constant for all cubes c in Ext Y which touch supp Y. We say 
that Y is an m-contour if a ( c ) =  m for these cubes. 

H We recall  t ha t  we use the symbol  if" to deno te  the c losure  of  a set IV. 
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We now generalize these notions to boundary contours. To this end, 
we first introduce, for each corner k of the box V, an "octant" K(k). 
Namely, if k has components k~ ..... k d, with k ~ = l / 2  for i e I _  and 
k~ = L + 1/2 for i ~ I + ,  then 

g(k)  := {x~ ~dlxi) 1/2 for i 6 I _ ,  xa<~L+ 1/2 for i~I+}  

We then say: a contour Y is short iff there is a corner k such that 
supp Y n  OVcOK(k).  Otherwise Y is called long. Note that short contours 
may be ordinary contours or boundary contours, while long contours are 
always boundary contours. 

For a short contour Y, we then define Int Y as the union of all finite 
components of K(k) \supp Y, Int,, Y as the union of all components of 
Int Y which have the boundary condition m, Ext Y as V\(supp Y u  Int Y), 
and V(Y) as supp Yw Int Y. As before, Ext Y is a connected set, and the 
notion of an m-contour is defined by the condition that c t (c)=m for all 
cubes c in Ext Y that touch supp Y. Note that these definitions are 
equivalent to the previous ones if the short contour Y is in fact an ordinary 
contour. Note also that the above definitions do not depend on the choice 
of the corner k if there are several corners k for which supp Yc~ O V c  K(k). 

For long contours, there is a priori no natural notion of an exterior or 
interior. We choose a convention that ensures that the volume of a compo- 
nent C~ of Int Y cannot exceed the value Ld/2 if Y is a long contour. 
Namely, if Y is a long boundary contour, and C~ ,..., C,, are the components 
of V\supp Y, then the component C~ with the largest volume is called the 
exterior Ext Y. If there are several such components C~j,..., C o, we choose 
the first one in some arbitrary fixed order (for example, the lexicographic 
order) as Ext Y. We then define Int Y=  V\(supp YwExt  Y), V(Y)= 
supp Y u  Int Y, Int,,, Y as the union of all components of Int Y which have 
the boundary condition m, and an m-contour Y as a contour for which 
0~(c)--m on all cubes c in Ext Y that touch supp Y. 

The following three lemmas state that the sets Ext Y and Int Y are 
defined in such a way that they have the main properties of an exterior and 
interior of the set supp Y. They are proven in Appendix B. 

The first of them expresses the fact that for two contours Yt and II2 
which do not touch each other, Y~ together with its interior is necessarily 
contained in one of the components of Ext Y2 u Int Y,_. 

I . e m m a  4.1. Let Y~, I"2 be nonoverlapping contours. Then the 
following statements are true: 

(i) If supp Y2 c Ext Y] and supp Y~ c Ext Yz, then V(Ii_,) ~ Ext Y~ 
and 1I(Yi) c Ext 112- 
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(ii) If supp Ylxc C2, where C2 is a component of Int Y2, then 
P'(Yl) c C2. 

(iii) I f supp Y] c l n t  Y2, then V ( Y l ) c l n t  Y2- 

The next lemma expresses the fact that it is not possible that two 
contours which do not touch are both included in the interior of each 
other. 

Lemma 4.2. Let Y~ and Y2 be nonoverlapping contours. Then one 
and only one of the following three cases is true: 

(i) supp Y2 ~ Ext Y~ and supp Y~ ~ Ext Y2. 

(ii) supp }'2 ~ Ext Y1 and supp Y~ c Int Y2. 

(iii) supp Y2 ~ Int Y~ and supp Y1 c Ext Y2. 

Definit ion 4.3. Let {Y~ ..... Y,,} be a set of nonoverlapping 
contours. Then Yk E { Y, ..... Y,,} is called an internal contour iff there exists 
a contour Y;~ { Y~ ..... Yn} with supp Yk~Int  Y~. Otherwise Yk is called an 
external contour. Finally, { Yl ..... Yn} is called a set of mutually external 
contours if all contours in { Y, ..... Y~} are external. 

The next lemma will be used in Section 4.2 to conclude that all 
external contours of a given configuration contributing to (3.5) have the 
same external label. This observation will be an important ingredient in the 
decomposition of Z(V,  h) into single-phase partition functions Z,,( V, h), 
and therefore in the proof of Theorem 3.1. 

Lemma 4.4. 
in 1I, and let 

Let { Y1 ..... Y,} be a set of nonoverlapping contours 

Ext = V / 0  ( I n t Y ~ w s u p p Y i )  (4.1) 
i 1 

Then Ext is a connected component of V\IJ~=] supp Yi. 

Remark. Let Yo be a contour, and let W o be one of the components 
of Int Yo. Then Lemma 4.4 remains valid if V is replaced by Wo, as can 
be seen immediately from the proof in Appendix B. 

While the preceding three lemmas, even though tedious to prove, just 
express our intuitive notions about exteriors and interiors (in fact, our 
definitions were chosen in such a way that they do), the next lemma is less 
obvious. In order to explain the need for it, we recall that the ground-state 
energies era(c) may be different from the corresponding bulk term e,,. As 
a consequence, the boundary may favor an otherwise unstable phase. In 
the expansion about the leading contribution e -E ' (~  to the single-phase 

822/79/1-2-5 
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partition functions Zm( V, h), this will have the tendency to increase the 
weight of boundary contours which describe transitions into one of these 
"boundary-favored" phases. In order to control the contributions coming 
from such contours (using the exponential decay e -~ In), we need a bound 
of the form 

Nav(Int Y) ~< const �9 I Y1 

where Nav(Int Y) denotes the number of elementary cubes in supp Y that 
touch the boundary 0 V of V. This is the main statement of the next lemma. 

l . e mma  4.5. Let Y be a contour in V, and let W1,..., IV, be the 
components of Int Y. Then 

Nav(Int Y) ~< C1 I YI (42) 

IOWil <~ C2 I YI (4.3) 
i = l  

and 

10P'( Y)I ~ c3 I YI (4.4) 

where Ci = 2d(2 i/a+ 1 )/(2 l/d_ 1 ), C2 = Cl + 2d, and C3 = C2 + 2d. 

The proof of this lemma relies on a lattice version of the isoperimetric 
inequality and is given in Appendix B. The proof of the required 
isoperimetric inequality is given in Appendix A. 

4.2. Decomposition of Z(V, h) into Pure Partition Functions 

The first step in the proof of Theorem 3.1 is the decomposition of 
Z( V, h) into N terms Zq( V, h), q = 1,..., N, which are obtained as perturba- 
tions of the leading terms e -eq( to. We start with the observation that all 
external contours contributing to (3.5) touch the set Ext introduced in 
(4.1). Given that these contours are matching, we conclude that all external 
contours of a given configuration contributing to (3.5) have the same label. 
Therefore 

N 

Z(V,h)= ~ Zq(V,h) (4.5) 
q = l  

with 
N 

Zq(V,h)= ~, ~I P(Yk) I-I e-e"~v") (4.6) 
{ r t  ..... Y,,} k = l  mff i l  
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where the sum goes over  sets of  matching contours  in V for which all 
external contours  are q-contours. As before, Vm is the union of all com- 
ponents  of  V\ ( supp  Y] u . . .  w supp Y,) that  have boundary  condition m, 
and E, , ( I 'm) is defined in (3.6). 

More  generally, let W be a componen t  of  the interior Int  Yo of some 
contour  Yo in V, a set of  the form (4.1), or  a set obtained from a compo-  
nent Wo of an interior Int  Yo by a similar construction,  

I+ W =  W o (Int  Y,. u supp Yi) 
i 1 

(4.7a) 

where { Yt,..-, Y,,} is a set of  nonover lapping contours  in W 0. We then 
define Zq( IV, h) as 

f l  N 
Zq(W,h)= y' P(Yk) I-I e-~'tv'~ (4.7b) 

{r~ ..... r,} k=l  m=l 

where the sum goes over  sets of  matching contours  in Vfor  which all external 
contours  are q-contours with V(Y) = (supp Yw Int  II) c IV. Here, Vm is now 
defined as the union of  all components  of  W\ ( supp  Y] u .-- u supp Yn) 
that  have boundary  condit ion m. Note  that  the sum in (4.7b) contains no 
contours  which surround the holes in W. Finally, given a volume W which 
is a disjoint union of volumes W] ..... W,, of the form (4.7a), we define 
Zq( W, h) as the product  of  the part i t ion functions Zq( Wi, h ), i = 1,..., n. 

Returning to (4.6), we derive a second expression for Zq( V, h), which 
eliminates the matching condition for the labels of  Y~ ..... II,,. To  this end 
we first sum over all sets { Yt,..., Y,,} with a fixed collection of external 
contours.  For  each external contour  Y this resummat ion  produces a factor 

N Z, , ( In t , ,  Y, h). This yields the expression 1"- [  m ~ 1 

N ] 
Zq( V, h) = ~ e -e,(Ext' P(Yk) I-I Zm(Intm Yk, h) (4.8) 

{ YI  .....  Yn}ex t  k = 1 m = 1 

where the sum runs over sets { Y~ ..... Y,,} ext of  mutual ly  external q-contours 
in V and Ext is the set defined in (4.1). Assuming that  Zq(Int , ,  Irk, h)#0,  
we divide each Z, ,  by the corresponding Zq and multiply it back  again in 
the form (4.7b.). I terating the same procedure on the terms Zq(Intm Yk, h), 
we eventually get 

Zq(V, h)=e -e4r~ Z f l  Kq(I'rk) (4.9) 
{Y~ ..... r,} i,=1 
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where the sum goes over sets of nonoverlapping contours which are all 
q-contours, while 

Kq(}1) := p(Y) e eq~ r3 1-~ Z,,(Intm Y, h) (4.10) 
,,=1 Zq(Int,, Y, h) 

The equality (4.9) is the desired alternative expression for Zq( V, h) which 
contains no matching condition on contours. Assuming that the new 
contour activities Kq(Y) are sufficiently small (for h in the transition region, 
this is actually the case, see Section 4.4), it also expresses the fact that 
e -eqt m is the leading contribution t o  Zq( V, h). 

Obviously, (4.9) can be generalized to volumes W of the form con- 
sidered in (4.7). One obtains 

Zq(W,h)=e -eq'w) ~ f i  Kq(Yk) (4.11) 
{ r l  ..... In} k=l 

where the sum goes over sets of nonoverlapping q-contours Y~ ..... Y,, with 
V ( L ) ~  w. 

4.3. Truncated Contour Models 

Given the decomposition (4.5) of Z( V, h) and the representation (4.9) 
for Zq(V, h), one might try to obtain the FSS of Z(V, h) by a cluster 
expansion analysis of the partition functions Zq(V, h). For such an 
analysis, one would need a bound of the form Igq(Y)l ~<~l~ with a suf- 
ficiently small constant e > 0. While it turns out that such a bound can be 
proven for stable phases q, it is false for unstable phases. 

In order to overcome this problem, we will construct truncated 
contour activities K'q( I0 and the corresponding partition functions 

Zq(W,h)=e -E,~"~ ~ f i  K'q(Y,) (4.12) 
{r~ ..... r.} k=l 

in such a way that: 

(i) The truncated contour activities K'q(Y) obey a bound 

[K'q(Y)I ~<e In (4.13) 

for some small e > O. 

(ii) Zq( W, h) = Zq( W, h) if the corresponding (infinite-volume) free 
energy fq = fo(h) is equal to f - m i n , , E  e fro, SO that the truncated model is 
identical to the original model i f fq=f  (following refs. 26 and 29, we call 
these q "stable"). 
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(iii) The truncated contour activities and the corresponding free 
energies are smooth functions of the external fields h. 

Heuristically, the truncated model will be a model where contours 
corresponding to supercritical droplets in the corresponding droplet model 
are suppressed with the help of a smoothed characteristic function. In the 
case of a two-phase model, this idea could be implemented by defining 

K+(Y) =K+(Y)X(  ct I Y I - ( f +  - f - ) [  V(Y)I) 

g'_( r3 = K_(Y)Z(o~ IYI--(f-  - f + ) I  v(Y)I) 

where )C is a smoothed characteristic function and 0~ is a constant of the 
order of r, for example, ~ = r/2. While the presence of the characteristic 
function would not affect the stable phases since f+  - f _  >/0 if the + phase 
is stable (and f _ - f + ~ > 0  if the - phase is stable), it would suppress 
contours immersed into an unstable + phase as soon as the volume term 
( f + - f _ )  IV( Y)I is bigger then the decay term proportional to I Y[. As a 
consequence, all contours contributing to the "metastable" partition 
function Z'q obey a bound of the form (4.13) as desired. 

Unfortunately, the above definition of K'q(Y) is circular because it uses 
free energies fq that are defined as free energies of a model with activities 
K'q(Y). To overcome this problem, we will use the following inductive 
procedure. 

Assume that K'q(Y) has already been defined for all q and all contours 
Y with IV(Y)I <n, n z ~ ,  and that it obeys a bound of the form (4.13). 
Introduce f~q'- ~ as the free energy of a contour model with activities 

1~ y q  ~ K'(Yq) if Iv(Yq)l<<.n-1 
K ' -  ( ) =  (4.14) 

L 0 otherwise 

Consider then a contour Y with I V(II) I = n. Since V( ~1 < n for all contours 
~" in Int Y, the truncated partition functions Z'q(Intm Y, h) are well defined 
for all q and m. Their logarithm can be controlled by a convergent cluster 
expansion, and Z'q(Int,, Y, h )#0  for all q and m. We therefore may define 
K'q(]I) for a q-contour Y with [ V( Y) I = n by 

1-~ Z,,(Int,,  Y, h) (4.15a) 
K'q(Y) = i~tq(Y)  fl(Y) e ~r ~ Zq(Int,, Y, h) 

with 

X'q( Y) = I-I X(~ l Yl - ( f~q"- l ) -  f ~  -'~) IV(Y)l) 
mC:q 

(4.15b) 
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I . e m m a  4.6 .  
and (3.11 ), and let 

Here 0c is a constant that will be chosen later and X is a smoothed charac- 
teristic function. We assume that )( has been defined in such a way that ;( 
is a C 6 function that obeys the conditions 

0 <~Z(x) ~< 1 (4.16a) 

X(x )= 0  ifx<~ - 1  and X(x)=  1 ifx>_-I (4.16b) 

0 <~---~X(x) ~< 1 (4.16c) 

dTxkX(x) <~ ~o for all k~<6 (4.16d) 

for some constant ~o. 
! As the final element of the construction of Kq, we have to establish the 

bound (4.13) for contours Y with IV( Y)[ = n. We defer the proof, together 
with the proof of the following Lemma 4.6, to Appendix C. 

We use fq=fq(h) to denote the free energy corresponding to the 
partition function Zq( V, h), 

I" 1 f q=-  un--logZ'q(V,h) (4.17) 
v ~  R~ I VI 

and introduce f=flh) and aq=aq(h) as 

f =  min f , ,  (4.18a) 
m 

aq =fq - f  (4.18b) 

Finally, we recall that for a volume W of the form (4.7a), t W] denotes the 
Euclidean volume of W, while for a contour Y or for the boundary O W of 
a volume W, I Y[ and IOWI are used to denote the number of elementary 
cells, i.e., the number of elementary cubes, plaquettes ..... and bonds in Y 
and O W, respectively. 

Assume that p( . )  and eq(.) obey the conditions (3.7) 

e = e 2 +~e -~(l -(1 + ~co)r (4.19a) 

2d 
a = ~ 3  3 ( c t -  2) (4.19b) 

Then there exists a constant % > 0 (depending only on d and N) such that 
the following statements hold provided e < e0 and 0Z >/1: 
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(i) 
(4.13). 

(ii) 

(iii) 

(iv) 

The contour activities Kq( I0 are well defined for all Y and obey 

If aq [ V( Y) I TM <~ ~ff, then Xq(Y) = 1 and gq( Y) = K'q( Y). 
If a q [ ~ 1/d ~< 0~, then Z q( W, h) = Z'q( W, h ). 
For all volumes W of the form (4.7a), one has 

I Z q( W, h)[ ~< e - f l ~ + o(,)1owl + }.~Nav( w) (4.20) 

where Nov(I4I) is the number of elementary cubes in if" which touch aV. 

(v) For W= V the bound (4.20) can be sharpened to 

[Zq(V, h)[ <,Ne-flVletl+~'~)wr3 max{e -aqlvl/4, e - f4c3) - I  T I ~  } (4.21) 

where C 3 = C 3 ( d  ) is the constant defined in Lemma 4.5. 

Remarks. (i) Due to the bound (4.13), the partition function 
Z'q( V, h) can be analyzed by a convergent cluster expansion. As a conse- 
quence, one can prove the usual volume, surface,..., corner asymptotics 
for its logarithm. Namely, using fCqd), ~q:<d-- I),..., :qr r176 to denote the bulk, sur- 
face,..., comer free energies corresponding to Zq(V, h), and introducing 
Fq( IV) as 

Fq(W)= ~. fo(C) (4.22) 

where fq(C)=fq if c does not touch the boundary aV of V, and, in analogy 
to (3.13), 

fq(C) = ~ / d - k \  (.) ~ n - k )  f " '  k = - d -  1 ..... 0 (4.23) 
n ~ k  

if c is touching a k-dimensional face of V and not touching its ( k - 1 ) -  
dimensional boundary, we get 

Ilog Zq( V, h) + Fq( tOl ~< I VI o( (ge)  L) (4.24) 

for some K < oo depending only on N and d. 

(ii) It is interesting to present a heuristic derivation of the bound 
(4.21) in the approximation of the droplet model. To this end, we recall 
that the diameter of a critical droplet is proportional to Z/aq. Assume now 
that aqL/z is" small. Then the size of a critical droplet is larger then the 
system size, and Zq( V, h) is a partition function describing small perturba- 
tions around a metastable ground state, with the weight 

Zq(V,h)~e-fqlt ' l+~176176 (4.25a) 
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For large values of aqL/z, on the other hand, supercritical droplets do 
fit into the volume V. As a consequence, the leading configuration con- 
tributing to Zq(V, h) contains a big contour (with an interior that is 
essentially all of V) describing a transition from the unstable boundary 
condition q to a stable phase t] with fr = f .  We conclude that 

Zq( V, h) ~ e - f  l~ + ~176 (4.25b) 

if aqL/r is large. Except for the numerical value of the involved constants, 
the bound (4.21) exactly describes this behavior. 

(iii) The fact that Xq( I0 suppresses supercritical droplets manifests 
itself in the fact that 

Zq(Y)=0 unless aqlV(Y)l<~[~+l+O(e)] IYI (4.26) 

See Appendix C for the proof of (4.26). 

4.4. Bounds on Der iva t ives  

We finally turn to the continuity properties of Zq and Z'q. As a finite 
sum of C 6 functions, Zq( V, h) is a C 6 function of h. The following lemma 
yields a bound on the derivatives of Zq( V, h). 

I . emma 4.7. There is a constant K [depending on d, N, and the 
constants introduced in (3.8), (3.9), and (4.16)] such that the following 
statements are true provided e < eo and �9 >/1: 

(i) Zq( W, h) is a C 6 function of h and 

dd-~k h) Zq(W, ~<lkl! {[Co+O(e)] IWl}lkle-fl~e~176 ~'~N~vtw~ (4.27) 

for all multi-indices k of order 1 ~< Ikl ~< 6. 

(ii) K'q(Y) is a C 6 functions of h, and 

d~k ~IY] Kq(Y) <~ (Ke) (4.28) 

for all multi-indices k of order 1 ~ ]kl ~ 6. 

(iii) log Z'q( W, h) is a C 6 functions of h, and 

ff-~k log Z q( h) ' w, <~ [c~ok~+ O(e)] [WI (4.29) 

for all multi-indices k of order 1 ~< [k[ ~< 6. 
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(iv) For W= V (and 1 ~< Ikl ~<6), the bound (4.27) can be sharpened 
to 

Zq(V, ~<lkl! { [Co+  O(e)] IVl}lkle-fltae c~§176 

x max{e -~ la/4, e-C4c3~-' r lea} (4.30) 

Proof. The proof of this lemma is given in Appendix D. 

Remarks. (i) For many models, including the perturbed Ising model 
introduced in Section 2, it is possible to prove a degeneracy-removing 
condition. In the context of a model with N ground states and a driving 
parameter h e ~N-~ ( N =  2 for the perturbed Ising model), one considers 
the matrix 

IV= (eq--eN) (4.31) 
q,i=l, . . . ,N--I  

and its inverse E -~. One then proves that for some value ho of h, all 
ground-state energies are equal, and that ~:-1 obeys a bound 

[]H=-I]] ~ = m a x  ~ [(g=-l)/q [ ~< const (4.32) 
i q 

in a neighborhood 0//of ho, which does not depend on r. 
On the other hand, Sq=fq--eq is a C 6 function of h with 

Ifq--eql ~< O(e) (4.33) 

and 

d-~ (fq-eq) [ <<, O(e) (4.34) 

by Lemmas 4.6 and 4.7. As a consequence, the inverse of the matrix 

Y = (fq --fN) (4.35) 
q,~=1,...,~r 

obeys a bound of the same form as E-~, with a slightly larger constant on 
the right-hand side; combined with the inverse function theorem and the 
fact that fq(ho)-f~(ho)<~ O(e), one immediately obtains the existence of a 
point h, ~ all, Ih , -hol~  < O(e), for which all aq are zero, i.e., all phases are 
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stable. More generally, one may construct differentiable curves hq(t), 
starting at h,, on which only the phase q is unstable, surfaces hqq-(t, s) on 
which phases q and ~] are unstable, etc. A possible parametrization of these 
curves, surfaces, etc., is given by 

a,~(hq(t)) = O,,q t, am(hqq(t, s)) = (~mqt + (~m4S,..., 

(ii) Due to Lemma 4.7(ii), the bound (4.24) can be generalized to the 
first six derivatives of log Zq( V, h). Namely, 

d~ [log Z'q( V, h)+ Fq( V) ] I ~ [ V[ O( (Ke) L) (4.36) 

for all multi-indices k of order 1 ~< Ik[ ~< 6. 

4.5. Proof of Theorem 3.1 

In order to prove Theorem 3.1, we introduce the sets 

Q={1  ..... N} and S = { q ~ Q l a q L < a }  (4.37) 

Using the decomposition (4.5) together with Lemma 4.6(iii), we bound 

+ 2 Zq( V, + 2 e -  F,~ m q,S q~S - ~  (4.38) 

where k is an arbitrary multi-index of order 0 ~< Ik] ~< 6. 
Next, we observe that for 1 ~< Ik[ ~< 6, 

b I - - ~ f q ( V )  ~<O(1)IVl (4.39) 

by the assumption (3.9) and the fact that F q ( V ) - E q ( V )  can be analyzed 
by a convergent expansion using Lemmas 4.6 and 4.7. 

For q ~ S, we then rewrite 

[ Z'q( V, h ) - e  -r*~z) ] = -e-e*cv~[ 1 --eFqtr3+'~ (v'h)] 



First-Order Phase Transitions 73 

Using the bounds (4.24), (4.36), and (4.39), we obtain the following bound 
on the first sum on the r.h.s, of (4.38): 

has 

d-~h k h ) - e-r4 r3] E [. Ztq( V, 
qes  

<<O((Ke) z) IVI Ikl+l ~ e -sq~m 
qeS 

O((Ke) L ] . . . .  I Vl Ikl §  m a x  e - r , (  ~< 
q~S 

<. O((K~) L) I gl Ikl § ~ m a x  e -Fq( ~ ( 4 . 4 0 )  
qeQ 

In order to bound the last sum in (4.38), we observe that for q r S one 

kd_.~_ie_rqt~ ~<O(1) IVI Ikl e -Fq(~ 

~< O(1) I vI Ikt eb,r+ o(,)] iO~e-/q la 

= O(  1 ) I VI Ikl eta', + o~,)] i aa  e -oq i vl e-.rl~q 

<~ O( I ) I VI tkl etZr~ + o(,)] lav1 e- .q I~ max e -Fq( ~0 
q~Q 

~< O(1) [VI ikl e -t~/'-a-2~'-~ iaa max e -Fq<~ (4.41) 
qEQ 

where we used the definition (4.37) of S and, in the last step, the fact that 
Z - '  IVI = (1/2d)IOV I. 

Finally, again for q r S, we have 

d~  h) Zq(V, ~ 0 ( 1 )  ]vlikle(l+ml~ e -~/4c31avl} e -firm 

~O(1)[v[Ikle(l+23 . . . .  in{a/Sd.r/4c3J)laVImaxe-Fq(e) (4.42) 
qeQ 

by (4.21) and (4.30). 
Inserting ~he bounds (4.40)-(4.42) into (4.38) and observing that 

10vI >~2dL for all d>~2, we finally obtain the bound 

d_~hk[ ~ --Fq(V3] VI Ikl+l e -Fq(lO (4.43) Z( V, h) - e <~ O(e-ZlZ~ I max 
q=l q~Q 
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where 

1 { ~ -~32d 
- -  :=  min -- log(Ke),  a - 4dFz - O(e), 4 - -  2 d -  4dFr, 
Lo 

= min {-log(Ke), 4 -  2d-4dyr, ~---~3 z -  2d-4d~r } (4.44) 

Recalling the definitions (4.19) of  0Z and e, together with the fact that  
C3 = C1 + 4d, we now rewrite 

and 

- log(Ke) = r -- ~ -- ( 1 + 2C1)?r - O( 1 ) (4.45a) 

0~ 2 d -  4dyr 2d 4 -  = 4 ~ 3  [ ~ - ( 3 2 d +  8C , )7 r ]  - O(1) (4.45b) 

2d 

4C  3 

2d - -  r - 2d-4dyr = 4-C-~3 [ r  - ( 3 2 d +  8 C t ) y r ]  - O( 1 ) 

= 2  2d I v  )?r  1 - 0 ( 1 )  ~ 3  k ~ -  ( 16d+4C1  

Choosing cc = r/2 + ( 16d + 3 C~ - 1/2) ),3, we obtain 

z 1 16d) ?r  - O( 1 ) - l o g ( K e )  = ~ - ( ~  + 5C~ + 

- 2d 4-2d-4dTr=-~3(2-(~+16d+5C])?r I - O ( 1  

and 

(4.45c) 

(4.46a) 

(4.46b) 

1 2dl  )] 
Lo 4C3 - + 1 6 d + 5 C ~  y r - O ( 1 )  

d 
[ 3 -  (1 + 3 2 d +  10C])yr  - to]  (4.46c) 

= 4C3 

where ro is a constant  that  depends on N, d, and the constants  introduced 
in (3.8), (3.9), and (4.16). 

Defining 

d b = b(d) = - -  (4.47a) 
4C3 

1 

Fo = Fo(d) = (4.47b) 
1 + 3 2 d +  10C~ 
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and 

= 3(1 - ~'/Yo) - Vo (4.47c) 

we obtain 1/Lo = bf  and hence the bound (3.19) of Theorem 3.1. 
Observing that 

e = e 2 -  ( r / 2 ) ( I  - ( I  + 1 6 d +  1 0 c i ) y )  = e 2 e - ( r / 2 ) ( 1  - ),/r0) (4.48) 

we note that the condition s > 0 implies the inequality e < eo provided 3o is 
chosen large enough. The condition 5>~ 1, on the other hand, is trivial, 
since 

= 2d ( ~ _ 2 )  > ~ d 
0Z C3 C3 r -  0(1) 

It remains to prove statements (iii) and (v). While (v) is a direct 
consequence of (iv), statement (iii) follows from the fact that ( f , , -  em) and 

- e , ,  ) can be analyzed by a convergent cluster expansion involving 
the decay constant e. Observing that O(e)~< O(e -~) can be bounded by 
e -b~, this proves (iii). 1 

5. PROOF OF THEOREM 3.2 

5.1. Decomposit ion of Z(AI V, h) into 
Pure Phase Partit ion Functions 

The first step in the proof of Theorem 3.2 is the same as the first step 
in the proof of Theorem 3.1. Namely, we decompose Z(A[ V, h) as 

N 

Z(A I v, h) = F, Zq(A I v, h) (5.1) 
q = l  

with 

N 

Zq(A[V ,h )=  ~ A(Y,  ..... Y,,) f l  P(Yk) ]-I e-era(v') (5.2) 
{ r~ ..... Y . }  k =  l m =  l 

Here the sum goes over sets of matching contours in Vfor which all external 
contours are q-contours. 

Next, we group all contours II,- for which V(Y,.) c~ supp A # ~ into a 
new contour YA, and introduce the sets 

supp IrA= U supp Y, V(YA) = U V(Y) 
Y r  YA Y r  YA 

Int Y.4 = V( IrA)\supp YA, Ext Ira = V\  V( YA ) 
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as well as 

supp YA = supp YAw supp A, V(YA) = V(YA) u supp A 

I n(~ YA = Int YAksupp A, Ext ~~ YA = Ext Y.~\supp A 

As usual, Intm YA is the union of all components of Int YA which have bound- 
ary condition m, Int,, YA = Int YA n V,,,, while Int~ ) YA = Int(~ YA c~ V,,. 

Recalling that A only depends on those contours for which 
V(Y) c~ supp A 4: ~ ,  we then define 

n ~ N 

P(YA)=A(Y'I ..... Y;,') 1-I P(Y'k) I1 e-E'IV'~(~"PPA\suPP XA)) (5.3) 
k = l  m = l  

where Y'1 ..... Y'~, are the contours in YA" Fixing now, for a moment, all 
contours Y~ in (5.2) for which V(Y~) c~ supp A 4: ~ ,  and resumming the 
rest, we obtain 

N 

Zq(AI V, h) = y" p(YA) Zq(EX(~ YA, h) I-I Z, , (Int~ ) YA, h) (5.4) 
YA m = l  

Introducing 

f i  Z.,(Int~. ~ Y.~, h) 
Kq(rA)=p(YA){exp[Eq(supp YA)3} ,,=,~" Zq(Int~ ) Y--~A~h) (5.5) 

we further rewrite (5.4) as 

Zq(AI V, h) = y" K( YA){exp[ -Eq(supp YA)]} Zq(Ext t~ YA, h) 
ra  

x Zq(Int t~ YA, h) (5.6) 

Using finally the representation (4.11) for Zq(Ext (~ Y~,h) and 
Zq(Intt~ YA, h), we get 

zq(alV, h)--e-Er Y'. (-I Kq(Yk) (5.7) 
YA { r~ ..... v . }  k = l 

Here the second sum goes over the set of nonoverlapping q contours 
Y1 ..... Y,,, such that for all contours Yi, the set V(Y;) does not intersect the 
set supp YA. 

In order to make the connection to the standard Mayer expansion for 
polymer systems, we then introduce G( YA, YI ..... Y,,) as the graph on the 
vertex set {0, 1 ..... n} which has an edge between two vertices i~> 1 and 
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j>~ 1, i#  j, whenever supp Yic~ supp Yi# ~ ,  and an edge between the 
vertex 0 and a vertex i # 0 whenever V(Y~) c~ supp IrA # ~Z~. Implementing the 
nonoverlap constraint in (5.7) by a characteristic function q~( IrA, Yt, -.-. IT,,) 
which is zero whenever the graph G has less than n + I components, we 
find that the standard Mayer expansion for polymer systems (see. for 
example, ref. 27) then yields 

Zq(AIV, h ) o~ 1 [ 
v, h) - E IG(r ) E 

YA , 1 = 0  " { YI ..... Yn} 

f i  Kq( Yk)] $~( YA, Y, ..... 1I,,) 
k = l  

(5.8) 

Here ~c( YA, Y3 ..... Y.) is a combinatoric factor defined in term of the 
connectivity properties of the graph G(YA, Yt ..... y.).~27) It vanishes if 
G( YA, Y~ ..... Y,,) has more than one component. 

5.2. Truncated Expectation Values 

In the context of Section 5.1, the expansion (5.8) is a formal power 
series in the activities K( Yi)- In order to use this expansion, one has to 
prove its convergence. As in Section 4, it is useful to introduce truncated 
models. 

For a contour Y with V(Y) n supp A = ~ ,  we define K'q(Y) as before 
[see (4.15a)], while for YA = { Yt,---, Y.}, where {Yt ..... Y.} is a set of 
contours with V(Y) ~ supp A # ~ for all Ys YA, we define 

Z, .(Int~ ) YA, h) 
K'q(VA)=p(YA){exp[Eq(supp YA)]} ,,=~'" Z'q(Int~' Y-:AI~ r~rAI-I Zq(Y) 

(5.9) 

with Xq(Y) as in (4.15b). Given this definition, we introduce 

Z'~(AIV, h )=e -e" r )E  K'q(YA) 5". f i  K'o(Yk) 
v,~ { Y~ ..... r,,} k =  l 

(5.10) 

and 

Z'q(At V, h) (5.11) 
=-  Zq( v, h) 

which can again be expanded as 

<A)v.q-Y'.K'q(YA) ~ ~. ~ K'q(Yk) qbc(YA, Y,,..., r,) (5.12) 
r a  n = o  �9 { r j  ..... r . }  k = l  
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The following lemma will allow us to prove absolute convergence of the 
expansion (5.12), which immediately yields the statements (ii)-(iv) of 
Theorem 3.2. 

I . emma 5.1. Let e, eo, and 0Z be as defined in Lemma 4.6, and 
assume that e<  eo and 0Z~> 1. Then the following statements are true: 

(i) If 

then Kq( Y ~) = K'q( Y A). 

(ii) Let 

aq max IV( Y)I]/d ~ (5.13) 
Y~ Y,~ 

Then 

[YAI = ~', [supp rl (5.14) 
Y~ Y.4 

]K'q( YA)[ ~< CA e~ Is"PP Alel r"l (5.15) 

(iii) Let k be a multi-index of order 1 <~ Ik[ ~< 6. Then 

d~Tk K'q( Y a) ~<[suppAI Ikl C A eO(~) Is"pP AI( Ke ) I rAI (5.16) 

where K is a constant that depends only on d, N, and the constants intro- 
duced in (3.8), (3.9), and (4.16). 

Proof, The proof of Lemma 5.1 is given in Appendix E. 

Using standard estimates for polymer expansions (see, for example, 
ref. 27), wc see that the bounds of Lemmas 4.6 and 5.1 immediately imply 
the absolute convergence of the expansion (5.12), 

<A'~" ~ 1 f l  , , v . q [ < ~ ,  IK'q(YA)I - -  ~_, IKq(Y~,)I'I+r Y, ..... Y,,)I 
YA n = o  n !  { r l  ..... r .}  k = l  

~< O( 1 ) CA e ~162 Is,pp AI (5.16a) 

and similar bounds for the derivatives, in particular, 

dk / A  \h [ CA eO(e) lsuppAI (5.16b) \ , v. ql ~< 0(1)IsuppAI Ikl 

Theorem 3.2(ii)-(iv) then follows using standard arguments. 
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5 .3 .  B o u n d s  o n  ZqIA] V, h) 

In conjunction with Lemma 4.6, Lemma 5.1 allows one to analyze 
Zq(AIV, h)/Zq( V, h) provided aqL<~ ~. In order to prove Theorem 3.2 in 
the case where aqt > 0~ for some of the phases q, we need an analog of the 
bounds (3.21) and (4.30) for Zq(A[ V, h). 

L e m m a  5.2. Let e, eo, and 0Z be as defined in Lemma 4.6, let 
g=max{e,  e-3~/4}, and assume that g<e o and ~ >  1. Then the following 
statements are true: 

(i) IZq(AI V, h)l ~< CAe ~ IsuppAle[Yr+O(~')] I~ 
x max { e-("q/a) I vl, e-(~/4c3) iOVl} 

(ii) Let k be a multi-index of order 1 ~< ]kl ~< 6. Then 

dTh k Zq(A [ V, h) I kl ! { [ Co + O(e) ] I Vl } I*M CA e o(~) Isupp A I 

X e [yr+Otg)] laVle- f lv I  max{e -(~,/4) I~q, e-(r/4C,)leVI} 

Proof. The proof of Lemma 5.2 is given in Appendix E. 

5.4. Proof of Theorem 3.2 

As pointed out before, the absolute convergence of the cluster expan- 
sion (5.12) immediately implies the statements (ii)-(iv). In order to prove 
Theorem 3.2(i), we proceed as in the proof of Theorem 3.1, using the 
decomposition (5.1), Lemma 5.1, and Lemma 5.2 instead of the decom- 
position (4.5), Theorem 4.6, and Theorem 4.7. Defining S as in Section 4.5, 
and observing Zq(A I V, h) = Z'q(A I V, h) if qsS ,  we bound 

i ] Z(AI V , h ) -  e-r'(V~(A)h V,q 
q = l  

V.q [ Zq( V, h) - e -Fq( v~] } 
q eS 

+ ~ Zq(AIV, h) + )~--/[(A)"~.qe -rq(m] (5.17) 
qr 

where k is an arbitrary multi-index of order 0 ~< [kl ~ 6. 

822;79/1-2-6 
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Combining the bounds (4.40) and (5.16), and bounding terms of the 
form Isupp A[ Ikl and IV[ ik, + ~ by e ~ we get an estimate for the first sum 
on the r ight-hand side of  (5.17) by 

d k e_~.q{ v) ] Z -~z[Z'q(AIV, h)--(A)'~'.q 
q eS  

~< CA e ~162 Isupp AI(Ke)L max e--Fq(V) (5.18) 
qeQ 

Here K is a constant  that  depends only on N, d, and the constants  intro- 
duced in (3.8), (3.9), and (4.16). The terms for q r  are bound in a similar 
way, leading to 

D r "~ l  V, q ~ J 

<~ CAeOt,)IsuppAle--[oV2d--2yr--O(1)110VI max e -rCtv~ (5.19) 
qeQ 

and 

a •  z,(A I v, h) 

~< CA eo(e) isupp ,41e(2rr + 0(11 - rain{ ~/8d, tl4C3} ) IOF] max e --Fq(It') 
qeQ 

(5.20) 

Inserting the bounds (5.18)-(5.20) into (5.17), and choosing ~ as in Section 
4.5, we get ~ =  e and 

z(.41 v, h ) -  F. e-~'(n(-4)';~, 
q = l  

<~ c AeO(,) Isupp AIO( e--b'~L ) m a x  e - Fq( v )  

qeQ 
(5.21) 

where b and f are the constants  introduced in (4.47). Together  with 
Theorem 3.1 and the observat ion that  a prefactor I V11*l + i can be absorbed 
into the exponential  decay term e -beL, the bound (5.21) implies 
Theorem 3.2(i). | 

6. PROOF OF THEOREM A 

Even though the s tatement  of  this section have a generalization (some- 
times a very straightfoward one) to the case of  several phases, we will 
restrict ourselves to the situation where only two phases, plus and minus, 
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come into play and the driving parameter is an external field h. However, 
we do not restrict ourselves to the model (2.1) (for which Theorem A is 
stated), but consider the two-phase case in the general setting of Section 3. 
In particular, we have two ground-state energies e+ satisfying, for h in an 
interval q/ [containing the point ho for which e+(h)=e (h)], the (non- 
degeneracy) bounds 

d 
0 < d ~< ~ [e_(h)  - e+(h)]  ~< ,4 (6.1) 

which imply the bounds 

_<d 
O<a,~dh [ f _ ( h ) - f + ( h ) ]  ~<A (6.2) 

on the free energies f• from Theorem 3.1 [cf. also (4.17)]. Actually, 
.~= 2Co according to the assumption (3.9). In the situation of Theorem A 
we have (d/dh) [ e _ (h) - e + (h) ] = 2. Considering now the free energies 12 

d 

F• h) = ~. f~)(h) [Ok V] (6.3) 
k = 0  

[cf. (3.18)] and their derivatives 

d 

M• h) = ~. mt~)(h) la k V I (6.4) 
k = O  

where m~)(h)= -df~)(h)/dh, and introducing 

AF(L, h)= F+(L, h)-F_(L, h) (6.5a) 

AM(L, h)= M § h)--M_(L, h) (6.5b) 

F+(L, h) + F_(L, h) 
Fo(L, h) = 2 (6.5c) 

M+(L,h)+M_(L,h) 
Mo(L, h ) =  2 (6.5d) 

we reformulate the bounds (3.21) of Theorem 3.1 for the two-phase case as 

dk { I-- ~ 1 AM(L'h) tanh( AF(-~'h).)I } -~  m(L,'h)- M~ La 2 

~<e -b~L (6.6) 

~2 W e  t a k e  he re  0 d V = - V.  
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with 0~<k~5.  For the magnetization m(h,L) and its derivative, the 
susceptibility x( h, L) = din(h, L )/dh, these bounds yield 

~-2 1 AM(L, h) 
re(L, h) = Mo(L, h) + Ld 2 tanh 

and 

AF(L, h)) + O(e_OeL) 
2 

(6.7) 

1 h 1 Ax(L,h)tanh ( A F ( L , h ) )  x(L,h)=-~Xo(L, )+-~ 2 - " 

+-~(AM(L'h).)2cosh-2( AF(L'h))+O(e-b~L) (6.8) 

Here Xo(L, h) = dMo(L, h)/dh and Ax(L, h) = dAM(L, h)/dh. 
In order to obtain Theorem A, and more generally the corrections to 

it in terms of an asymptotic power series in l/L, we proceed in several 
steps: 

(i) We expand the funtions AF(L, h), Mo(L, h), AM(L, h), Xo(L, h), 
and Ax(L, h) around the point h,(L) where AF(L, h) = 0, obtaining a power 
series in (h-h,(L)) with coefficients that are derivatives of AF(L, h) and 
Fo(L, h) at the point h,(L). 

(ii) We Taylor expand the coefficients in (i) into a power series in 
(h,(L)-h,). Combined with the volume, surface,..., corner expansion for 
the derivatives of F• h) and the fact that h,(L)-h,  can be represented 
as an asymptotic expansion in powers of l/L, we obtain the coefficients of 
(i) as power series in l/L, with coefficients that are derivatives of the 
infinite-volume free energies f• surface free energies f(d-~)t~,~ j +  ~,,j,..., and 
comer free energies f~)(h) at the infinite-volume transition point h,. 

(iii) At h,, the derivatives o f f ~ ) ( h )  are identified with the one-sided 
derivatives of the free energies f(k)(h) defined by (2.15). 

(iv) We use Lemma 6.1 below to replace the argument of the hyper- 
bolic functions in (6.7) and (6.8) by few expansion terms with an additive 
error. 

(v) In a final step, we use Lemma6.3 to replace h-h,(L) by 
h -  hz(L ), where hz(L ) is the position of the susceptibility maximum. 

Lemma 6.1. Let x and y be two nonzero real numbers which have 
the same sign. Then 

( ? tanhy) l x - y  [ (6.9a) ] t a n h x - t a n h y l ~ < m i n  ta x, 
Y 
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and 
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}cosh x-cohh yl <. 2 min (tan-hx X, tayh y ) Ix-  yl (6.9b) 

L e m m a  6.2. For large L there exists a unique point h,(L)~ ql for 
which F+ (L, h ) =  F_(L, h). This point satisfies the bound 

h,(L)=h,+ a 1 + O  (6.10) 
m+ - m _  

L e m m a  6.3. For large L there exists a unique point hz(L ) ~ as 
well as a unique point h~(L)eql for which the susceptibility x(L, h) and 
the Binder cumulant U(L, h), respectively, attain its maximum. To the 
leading order in IlL, their shift with respect to the point h,(L) is given by 

and 

hx(L)=ht(L)+6 X+-X- 1 ( 1 ) (m + -m_)3-~ --a+ O 

Proof of Theorem A. 
Introducing 

m~_)(h)= -df~,(h) Z~'(h) = dZf'~-'(h) 
- d h  ' d h  2 ' 

we get 

and 

(6.11) 

X + - Z _  1 ( 1 )  
hdL)=h,(L)+4 (~+--m-)3-~+O ~ (6.12) 

Let us begin with the identification (iii). 

k=d ..... 0 (6.13) 

f ~ ( h , ) =  lim fIk)(h) (6.14) 
h ~ h t •  

m~)(h,)=_ df~hh) h,• Z~)(h ')= aV'k ---(h)lah 2 I,,,• (6.15) 

for k = d ..... O. In particular, the one-sided derivatives (2.16) as well as the 
limits (2.17) and (2.18) are expressed in terms of derivatives and limits of 
the corresponding differentiable function f~) :  

d f• h=h, m• = - - ~  (6.16) 
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and 

r• =f~-])(h,)  (6.17) 

Also 

AF(L) = AF(L, h,) (6.18) 

with AF(L,h)=(F+(L, h)-F+(L,h)) .  To show all this, we first notice 
that, for the two-phase case, the bound (3.19) from Theorem 3.1 reads 

d~h k [ Z(L, h) - e--F+(L,h) - -  e 

~< i Vik+ ] max(e--r+(L,h), e--V_(L,h)) O(e-bet') (6.19) 

Taking into account  that  F• are asymptotical ly dominated  by 
f+_(h) L a, the bound (6.19) implies that  for h > h ,  the free energies f(k)(h), 
k = d, .... 0, defined by (2.15) actually equal the corresponding free energies 
f(k+)(h), k=d , . . . , 0 ,  from Theorem3.1  [we have chosen the notat ion for 
which min(f  +(h), f_(h))= f +(h) for h > h,]. Similarly, f(k)(h)= f~)(h), 
k =  d, .... 0, for every h <hr .  13 This identification immediately implies the 
equalities (6.14)-(6.18 ). 

Notice also that  by (3.9) and Theorem 3.1(iii) one has 

d k r 
J+ -< Ck + e -be (6.20) 

d---~-~ -~ 0 

and thus also 

m + O ( I h , ( L ) -  h,I) = m § O / (1 + lIKll ! 
- \ L / 

(6.21) 

according to L e m m a  6.2, where we evaluate AF(L) with the help of  (2.8) 
and Theorem 3.1(iii). 

Expanding now M• h) and F• h), we have 

M• h) = Me(L,  h,(L)) + O([h - h , (L)]  L d) 

=m• Ld + O([ h -  h,(L) ] L d) + O(L d-l) 

=m• (6.22) 

s3 For h =h,, the asymptotic behavior will be determined by the first k = d -  1 ..... 0, for which 
f~)(h,) #f(k_)(h,). For example, if f~-~ >ft_a-l)(ht) , then f(k)(h,)=f(k)(h,) for all 
k = d,..., 0 [of course, f~(h,) =f~)(h,)]. 



First-Order Phase Transitions 85 

and 

-AF(L, h ) =  [M+(L,  h,(L))- M_(L, h,(L)] [ h -  h,(L) ] 

+ O([h - h,(L)] 2 L a) 

= ( m  + - -  m _ ) [ h  - h,(L)  ] L a + O( [h - h , ( L ) ]  2 L d) 

+ O([1 + [Ixll][h--h,(Z)] L d-~) 

=2x{1 + O([h-h,(L)]} + O([1 + Ilxl[] t - ' )  

Here 

Using Lemma 6.1 

(6.23) 

m+ - - m _  Ld x = [h - h,(L) ] (6.24) 
2 

to replace the argument of the hyperbolic functions in 

and 

+ O( [h - h,(L) ] (6.25) 

( 2 )  2 x(L,h)= m+ m_. cosh_2(x)La+O([l+llKl[]Ld_~) 

+ O([ h-h,(L) ]L a) (6.26) 

and 

In order to replace further the argument x of the hyperbolic functions by 
the argument 

2 = m +  - -m_ [h - hx(L) ] L a (6.27) 
2 

used in (2.19) and (2.20), we finally use Lemma 6.3 to bound 

Itanh x -  tanh 21 ~< Ix-:~l ~< O(L -a) 

[cosh -z x - cosh-2 ~71 ~< Ix - if[ ~< O(L-a) (6.28b) 

Combining the bounds (6.24) and (6.28) with the assumption I h -  hz(L)l <<. 
O([1 + [Ixll] L ~), we get the bounds (2.19) and (2.20). 

(6.28a) 

m(L,h) =m+ +rn- Fm+--m- 
2 2 

(6.7) and (6.8) by x, we get 

tanh(x) + 0([1  + IIKII-I L -~) 
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The shifts (2.21a) and (2.21b) as well as the bound (2.22) on the 
mutual  shift h u ( L ) - h z ( L )  follow from Lemmas  6.2 and 6.3. | 

Proof of  Lemma 6.1. Without  loss of  generality, we may  assume 
that  x > y > O .  Since ( tanh t)/t is a decreasing function of t, we have 
( tanh y)/y > (tanh x)/x  and thus 

tanh x -  t anh y t a n h y < < l _ Y _ = l x - y  I (6.29) 
tanh x = 1 - tanh------~ x [x-----~ 

This concludes the p roof  of  (6.9a). In order to prove (6.9b), we bound 

(y sin t dt 
Icosh-2 x - co sh -2  Yl = 2 Jx cosh 3 t 

~< 2 -x -Iy cosh -2  t dt 

= 2 I tanh x - tanh Y l (6.30) 

and use (6.9a). | 

Proof of Lemma 6.2. 
large L, the bound 

Using the bounds (6.2), we get, for sufficiently 

2zd<~ delF(L'h) <,N2ALd (6.31) 
dh 

Since AF(L)--AF(L,  h,)= O(L a-  1), we get the existence of a unique h,(L) 
for which AF( L, h) = 0. Moreover ,  h,( L ) ~ ( h, - B/L, h, + B/L) for some /~. 
For  h in this interval, the Taylor  expansion of AF(L, h) around h, yields 

AF(L, h) = AF(L) - (m + - m_ ) Ld(h - h,) + (h - h,) O(L d- 1) (6.32) 

This implies (6.10) [valid also for AF(L)=O when h,(L)=h,] .  | 

Proof of  Lemma 6.3. To get (6.11), we can actually follow the p roof  
of  Theorem (3.3) in ref. 6, replacing only h, by h,(L). Thus we use first (6.8) 
combined with the bound 

dkF+_(L, h) 
dh k ~ Ck zd (6.33) 
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[here Ck may be chosen as C_.k=(Co)k-bO(e -be) by (3.9) and 
Theorem 3.1(iii)] to get 

h)--~[AM(L,h)]2cosh -2 ~<1+2C 2 (6.34) 

Hence 

z(L, hr(L)) -z(L, h) >1.~._ [AM(L, hi(L))] 2 
~" 4L d 

I [AM(L,h)]2cosh-2(AF(L'h).)--2--4C2 
4L a 

(6.35) 

Next, we use (6.31) and (6.33) to bound ](d/dh)[AM(L, h)] 21 by 8AC2L 2a. 
As a consequence, 

[[AM(L, h)] 2 - JAM(L, hi(L))]2[ ~< 8AC2L 2a [h - h,(L)[ (6.36) 

and 

1 z(L, h,(L ))--z(L,h) >~ ~-ff~ [ AM(L, h,(L ) )]2 [1--cosh-2 (AF(L'h)) ] 

--2AC2 [h-ht(L)[ La cosh-2 (dF(L'h))--2-4C2 

On the other hand, (6.37) 

4alh-h'(L)lLd<~ AF(L,h)2 <<'AIh-h'(L)ILd (6.38) 

by (6.31) and the fact that AF(L, h,(L))= O. Using the lower bound 

o~-'~-' 
cosh2o~> l + ~ - J  ~>l+~tz>~2lctl (6.39) 

valid for any ~, we imply that 

cosh_2 AF( , h! <. L a (6.40) 
a I h -  h,(L)l 
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Thus, using once more (6.31) and (6.38), we get 

z ( L , h , ( L ) ) - - z ( L , h ) > ~  1-~--(2Ld)2[1-cosh-2(4B)].~4L d 
4A Cz 

2 - 4C 2 
a 

(6.41) 

whenever we suppose that Ih-h , (L) l  >/BL -d, where B >  0 will be chosen 
later. Observing that 

cosh-2 (4  B)  < 1 (6.42) 

it is clear that the right-hand side of (6.41) is positive, once L is sufficiently 
large (how large depends on the choice of B). 

Thus, it remains to consider the case Ih-h,(L)L <BL -a. Taking into 
account that AF(L, h,(L))=0 we get 

dx(L,dh h) h,(L) = _ _  L d2Mo(L,dh 2 h) h,(t,) 

3 dAM(L, h) h,tL) AM(L, h,(L)) + O(e -b~L) (6.43) 
+ 4L a dh 

Using the bound (6.33), we get 

dz(L, h) h,(m = 3 dh ~ ( Z + - - Z _ ) ( m + - m _ ) L d + O ( L  a-l) (6.44) 

Applying once more the bound (6.6), this time for k =  3, and using (6.31), 
we get, for Ih-h , (L)]  <BL -a, the bound 

dZz(L, h) ,-[1AM(L ' h)]4L_a 1 --3 tanh2[dF(L, h)/2] 
dh 2 - 2  12 J cosh2[AF(L, h)/2] + O(L2d) 

(6.45) 

Taking into account that according to (6.38) one has IAF(L,h)I<~ 
2A Ih-h,(L)l L a and choosing B > 0  so that 

1 - 3 tanh2(AB) 
e := cosh2(AB ) > 0 (6.46) 

we get 

d2x(L, h) 1 
~< --7~7 (m+ - - m _ )  4 L3ae dh 2 10 

(6.47) 
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for [h-h,(L)[ <BL -d and L large enough. The bound (6.47) together 
with the bound (6.44) implies that there exists a unique zero hx(L ) 
of dz(L,h)/dh in the interval (h , (L ) -B /L  d, h , (L)+B/L d) and that 
hx( L ) - h,( L ) = O( L -2d). 

For h - h , ( L ) =  O(1/L 2d) we have AF(L, h)= O(1/L d) by (6.38) and 
thus, using (6.45) and (6.36), we get 

]4 
d2x(L, h) - 2  (m+ - m _ )  L3a+ O(L 3d-l) (6.48) 

dh 2 

Taking into account (6.44), we conclude the bound (6.11 ). 
To prove the bound (6.12), we first notice, by a straightforward 

computation, that 

U(h,(L))=~ 1 - 4  ( m + _ m _ ) 2 - ~ + O  ~ (6.49) 

Using the fact that, for L large, 

d2z 
dh 2 

1 d3Mo(L, h) 1 d3AM(L, h) .  h [AF(L, h)~ 
Ld dh 3 + - ~  dh 3 tan \ J 

1 d2AM(L, h) AM(L, h) 
+ L a dh 2 cosh2(AF(L, h)/2) 

3 {dAM(L, h)'~ 2 1 
+ 4L d \ dh ,] cosh2(AF(L, h)/2) 

3 dAM(L, h) 
2L a dh 

tanh( AF( L, h)/2) 
JAM(L, h)] 2 cosh2(AF(L ' h)/2) 

1 [AM(L, h)] 4 1 - 3  tanh2(AF(L, h)/2) 
8L" 

3a l ( 2 ) 4 1 -  3 tanh2(AF(L, h)/2) 
<~ O( L 2a) - L -8 cosh 2( AF( L, h)/2) (6.50) 

we find that U'(L, h) is negative [and thus smaller than U(h,(L))] when- 
ever 

1 - 3 tanh2(AF(L, h)/2) 
~< - e  (6.51) 

cosh2(AF(L, h)/2) 
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for some positive e. To meet this condition, it suffices to take 
]h -h , (L)[  > B/L d with B such that 

2/aB\ 3 
cosh [-~-)~>~(1 +g) (6.52) 

for some g>0.  Indeed, using (6.38), we get [AF(L,h)I >>-�89 
and thus 

3 cosh2 (AF(2' h))>-~(1-g) 

which implies (6.5 1 ) with e = 2U( 1 + e). 
In the interval Ih-h,(L)I<~B/L d we consider the leading terms to 

dU(L, h)/dh and d2U(L, h)/dh 2. Namely, 

dU(L, h) 
dh 

38 Ldc~ (AF(L' h))[  AM(L'h)sinh (AF(L'h) ) 2  - 

dAM(L,h)/dh~.._(L:_~ cosn'3(AF(L'h))  

dAMo(L,h)/dh ( L h))l (6.53) - 3 AM(L, h) sinh AF( ' 

yielding 

dU(L,dh h) h,(L~ ~ "38 L d  m + --Z-_m_ (6.54) 

and 

d2U(L'h)dh 2 2L3d(m3 + - -m- )2  [ 

1 )2 <~ - -~ L3d(m + -- m _ 

l + 2sinh2 (dF(L'h))l_ . - } - O ( L  3 d - t  ) 

(6.55) 

Thus, there exists a unique root hv(L) of the equation dU(L, h)/dh = 0  in 
the interval ]h - h,(L)] ~ B / L  d and hv(L) - h,(L) = O(L --2d), Moreover, for 
h-h,(L) = O(L -2d) we have AF(L, h) = O ( L  - d )  and thus 

d2U(L, h) 2 3d _)z 
dh 2 = - ' ~ L  (m+-m +O(L sa-l) 
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Hence, 

dU(L, h) dU(L, h) h,~L) dzU(L, h) h,(L~ 
dh dk + dh2 + r h,(L)) 

[h-h,(L)l = 0  (6.56) 

yields the shift (6.12) claimed in the lemma. I 

We are left with the proof of (2.23) and (2.24) for 

4d(1 + Ilxll) 
Ih -hx(L) l  > (m+ - -m_)L  (6.57) 

Using (6.2), (6.11), and the bound (6.38), we first note that the condition 
(6.57) implies 

AF(L,h) a4d La -a) aL 
2 > - 4 ~  +O(L >~-~+O(L -a) (6.58) 

Combined with (6.7) and (6.8), we obtain 

m(L, h) = L-aM +(L, h) + O(e -aL/A) 

z(L, h) = L -a dM +(,L, h) + O(e_~L/A ) 
a n  

if h > hz(L) + 4d( 1 + I1~11 ) / ( m  + - m _ )L and 

re(L, h) = L-dM_(L,  h) + O(e -aLIA) 

x(L, h) = L-ddM-(,, L' h) + O(e_aLm) 
a n  

if h<hz(L)-4d( l+l lKl l ) / (rn+-m )L. Expanding M+_(L,h) and its 
derivative into volume, surface ..... corner terms, this leads to 

m(L, h) = m +(h) + O(1/L) 

x(L, h) =x+(h )  + O(1/L) 

if h >hz(L ) +4d(1 + IlKll)/(m + - m _ ) L  and 

m(L, h) = m_(h) + O(1/L) 

z(L, h) = x-(h)  + O(1/L) 

if h < hz(L) +4d(1 + I IKI]) / (m + --m_)L.  
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Next, we recall [e•177  <~ Ilxll for the asymmetr ic  Ising model  
(2.1). As a consequence, [zlF(L)l <~ 2dL a- ][2 Ilxll + O(e-b~)]-  Combined  
with Lemmas  6.2 and 6.3, we conclude that  

4d(llxll + 1) 
Ihz(L) - h,I ~ (Ira + - rn_ I )L (6.59) 

As a consequence, h < hz(L ) + 4d( 1 + II x II ) /(m + -- m _ )L  implies h < h, and 
hence m(h)=m_(h)  and z (h )=z_ (h ) ,  while h>hx(L)+4d(1 + Ilxll)/ 
(m + -- m _ ) L implies h > h, and hence m ( h ) = rn + ( h ) and Z( h ) = Z + (h)- The 
condition (6.57) therefore implies the bounds (2.23) and (2.24). 

APPENDIX A. STRONG ISOPERIMETRIC INEQUALITY 

Using the s tandard isoperimetric inequality, 

IOWl >~ _x/Z d Wl(d-- l)/d 
1-'(d/2+ 1) TM "'' 

(A.1) 

in the p roof  of  L e m m a  B.3 below, we would get, for d~> 4, a negative factor 
on the r ight-hand side of  the bound (B.2). We strengthen (A.1) with the 
help of  additional in fo rmat ion- - the  fact that  the considered sets W are 
finite unions of  closed elementary cubes. 

L e m m a  A.1.  Let W be a union of closed elementary cubes. Then 

laW] >i 2d l W] ~a- l>/a (A.2) 

Proof. The proof  is just a part icularly simple case of  the p roof  of  
optimali ty of  the Wulff shape. (28) Namely,  

IW+eCl-IW] 
10W] = lim (A.3) 

e~O e 

where eC is the rescaling, by the factor e, of  the (hyper)cube C of side 2 
with the center at the origin, and 

W + e C =  { x + y :  x~  W, yEeC} (A.4) 

is the e-neighborhood of W in the m a x i m u m  metric. The  Brunn -  
Minkowski  inequality (valid also for nonconvex W; see, for example,  
ref. 14) yields 

I w +  ecI 1/a 1> I W] TM + leCI lid (A.5) 
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Thus 

lim IW+eCl- IW1 ~ lim (I wit/a+ IeCl~/")d--IW1 
~0 ~ e ~ O  

=dlClValWl<a-lva=2dlWI ta-~va l (A.6) 

APPENDIX B. PROOF OF L E M M A S  4.1-4.5 

We start with two Lemmas B.1 and B.2 that are an important techni- 
cal ingredient to prove Lemmas 4.1, 4.2, and 4.4. 

I . e m m a  B.1. Let Y be a short contour with supp YnOVcOK(k) .  
Then: 

(i) 
(ii) 

(iii) 

supp Y n  O V= supp Y n OK(k)= supp Y n  ( 0 V n  OK(k)). 

0 Int Y c  OK(k) w O supp Y. 

Int YnOV=In t  YnOK(k)=Int  Yn(OVnOK(k)).  

Proof. 
(i) supp YnOK(k)=supp YnOK(k)n V=supp Ync'lK(k)nOV 

since VnOK(k)=OVnOK(k) and s u p p Y c V .  On the other hand, 
supp Y n  O V c  OK(k) implies supp Y n  OVc OK(k) n O V and hence 
supp Y n  O V c  supp Y n  OK(k) n O V. Combining this with supp Y n  OK(k) n 
OV~supp YnOV, we obtain (i). 

(ii) Follows from the fact that all components of Int Y are com- 
ponents of K(k)\supp Y. 

(iii) In order to prove (iii), we first prove Int Y n O V c O I n t  YnOV. 
This can be proven as follows: the inclusion Int Y c  V implies VCc (Int y)c 
implies dist(x, V c)/> dist(x, (Int y)c). Therefore dist(x, (Int y)c) = 0 
for all xeOV and hence for all x E I n t  YnOV. Since x ~ I n t  Y and 
dist(x,(Int  Y)C)=0  implies x ~ 0 I n t Y ,  this proves I n t Y n 0 V c  
0 In t  Y n O K  

Using (ii), the (just proven) fact that Int Y n O V c O I n t  YnOV, and 
the fact that 0 supp YnOV~OK(k),  one proves that Int YnOVcOK(k) .  
Intersecting both sides with Int Y and observing that Int Y~  V while 
Vn  OK(k) = OK(k) n OV, one concludes that 

Int Y n  OVc Int Y n  OK(k) = Int Y n  OK(k) n OV 

This combined with the fact that 

Int Y n  ~K(k) n aV~ Int Y n  OV 

proves (iii). ] 
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Lemma B.2. Let Y~ and Y2 be two nonoverlapping contours with 
supp Y~ ~ Int Y2. Assume that Y2 is a short contour with OVn supp Y2 
OK(k) for some comer k. Then Y~ is a short contour with 0Vc~supp Y~ 
OK(k) as well. In addition, supp Y2 c~ Int Y~ = ~ .  

Proof. By Lemma B.l(iii) and the fact that supp Y ] ~ I n t  Y2, 
supp Y1 n 0 V : I n t  Y2nOK(k)cOK(k). Let now Xo~supp Y~ c l n t  Y2. By 
the definition of Int Y2 and Ext Y2, and by the fact that supp Y2 is con- 
nected, we may construct a path co in K(k) which connects Xo = co(0) to 
infinity such that 

co(t)~Int  Y2 for t ~ [ 0 ,  1) 

co(t)Esupp Y2 for t ~ [ 1 , 2 )  

co(t)eExt  Y2 for t e [ 2 , 3 )  

co(t)~K(k)\V for t ~ [ 3 ,  or) 

Assume now that supp Y2 n Int YI ~ ~ .  Since supp Y2 is a connected set 
which does not intersect supp Y~, this implies that supp Y2 c Int Y~. As a 
consequence, x2=co (2 )~ In t  Yl and colt2,~) is a path in K(k) which con- 
nects xz ~ Int Y~ to infinity. But this implies that col t2,o~) must intersect the 
set supp Y~, and hence, by the assumption that supp Y~ c Int Y2, the set 
Int Y2. This is a contradiction, because co was constructed in such a way 
that co(t)r  Y2 for t>~l. II 

Proof of Lemma 4.1. (i) Since supp Y2 ~ Ext Yt, supp Y2 c~ Int Y~ 
= ~ .  It follows that each point in Int Y] can be connected to 0 Int YI (and 
therefore to supp Y,) by a path o9 which does not intersect supp Y2. As a 
consequence, all points in Int Y~ lay in the same connectivity component 
of V\supp Y2 as supp Y~. Since supp Y] c Ext Y2, we conclude that 
Int Yt c Ext Y2, and hence Int Y~ u supp Y~ = Ext Y2- In a simillar way, 
Int Y2 kJ supp Y2 ~ Ext Y]. 

(ii) Let us first assume that ]I2 is a short contour. Then Y] is a short 
contour as well and supp Y2 n Int Y~ = ~ by Lemma B.2. Continuing as in 
the proof of (i), we obtain that Int Y1 kJ supp Y~ c C2. 

Next, consider the case where Y~ is short while Y2 is long, and assume 
that supp Y2 c~ Int Y~ =~ ~ .  Since supp Y2 is connected, this would imply 
that supp Y2 = Int Y~. By Lemma B.2, this would imply that Y2 is short as 
well. Therefore supp Y2r~Int Y~ must be empty. Again, this implies 
Int YI u supp Y~ = C2. 

As the last case, assume now that both Y~ and I"! are long. Since 
C2 c Int ]I2, 1C2] ~< Ld/2 by the definition of the exterior for long contours. 
Since supp Y2 is a connected set, while C2 is a connected component of 
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V\supp Yz, both C2 and V\C2 are connected sets. Observing that 
supp Yl = C2 implies V\supp Yi = V\C2, we then introduce the compo- 
nent Cl of V\supp Y~ which contains V\C2. A moment of reflection shows 
that [CI[>[V\Cz[, which, by the fact that [V\C2I>~Ld/2, implies that 
Ci = Ext Y~. As a consequence, 

Int Yl c::: V\Ext YI = C2 

which concludes the proof of (ii). 

(iii) Follows from (ii). | 

Proof of Lornma 4.2. We only have to show that supp Yl c Int Y2 
and supp Y,_ c Int Yl leads to a contradiction. In fact, supp Y1 c Int Y2 
implies that supp Y~ w Int Yl c Int Y2 by Lemma 4.1. As a consequence, 
Ext Yi = supp Y2 w Int Y2, which implies that supp Yz c Ext Yi. But this is 
incompatible with supp }'2 C Int Yi. II 

Proof of Lemma 4.4. Let Yk be an internal contour. Due to 
Lemma 4.2, this implies that (Int Yk W supp Yk) ~ Int Yj for some j # k  and 
hence E x t =  v\ui~,k(Int  Yiwsupp Y3. Iterating this argument, we get 
that the set Ext is given by 

Ext -- (Int Y~ u supp Y~) (B.1) 
i l 

where { Y~,..., Y~} are the external contours in { Y1 ,..-, Y,}. Obviously, Ext 
is separated from the rest of V by the support of the contours Y~ ..... Y~. 
We therefore only have to show that Ext is connected. 

Let 

and 

E1 = V\(Int Y] u supp Y~) = Ext Y~ 

Ek = Ek_ l \(Int  Y~. u supp Y~.). 

Assume by induction that E k_ i is connected. Let x, y e E k . We have to show 
that x and y can be connected by a path co k in Ek. Using the inductive 
assumption, we can connect x and y by a path r in E k _  1. Assume 
without loss of generality that COk_ ~ intersects the set W = Int Y~ u supp Y~,, 
and let xl be the first and Yl the last intersection point o f o )  k _  ] with W. Since 
both W and V\ W are connected, the boundary 

OvW= {x~ Vl dist(x, W ) =  dist(x, V \ W ) = 0 }  

822/79/1-2-7 
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is connected, and x 1 and y~ can be connected by a path co in OvW. Using 
the path cok-i from x to xl ,  the path co from xl to y~, and again the path 
cok-1 from y~ to y, we obtain a path ask in Ek U O v W  which connects x to 
y. The desired path cok is obtained by a small deformation of o3 k which 
ensures that cok is a path in E k. l 

In order to prove Lemma 4.5, we need the following lemma, which is 
based on the strong isoperimetric inequality proven in Appendix A. 

Let W be a union of elementary cubes in V, with Lemma B.3. 
I IV] <~ La/2. Then 

21/a+ 1 
10Wn0VI ~< 2v--Tz-L-i_ 1 IOW\OVI (8.2) 

21/a+ 1"~ 
IOWl ~ 1 + 21/a - lJ  IOW\OVI (8.3) 

Proof. We introduce the (d-1) -d imens iona l  faces 

F~={x~Ralxi=l/2,1/2<...Xk<...L+l/2, k ~ i } ,  i = 1  ..... d 

Fd+i={xeRdlxi=L+l/2 ,1/2<-.xk<-. .L+l/2 ,  k ~ i } ,  i =  1,..., d 

together with the projections hi: V--* F;, red+i: V ~  Fd+ i, where x ' =  n;(x) 
has coordinates X'k=Xk for k4:i  and x' i= I/2, while x ' i=L+ 1/2 for 
x'=ga+~(x). Finally, for each elementary (d -1 ) -ce l l  p e t e ,  we define 
zc_(p) as the projection hi(P) onto the face F i which is parallel to p, and 
g+(p )  as ga+i(P). 

Let Gi=  F ; n  O W, i =  1,..., 2d, and consider an elementary (d -1 ) - ce l l  
p e Gi, together with the line l that links the center of n_ (p )  to the center 
of rc +(p). Then l must intersect 8 W an even number of time. Define 

H i =  {p ~ Gi [ there does not exist p' ~ OW\OVwith g _ ( p ' )  = zr (p)} 

and consider an elementary (d -1 ) - ce l l  p e GikHi, i =  1 ..... 2d. Then either 
both g (p) and rc+(p) lie in UJ=l Gj\Hj, in which case there are at least 
two elementary ( d -  1 )-cells p' ~ 0 W\O V with g_  (p ')  = g_  (p), or only one 
of rr (p) and zr+(p) lies in UJ=~ Gj\Hj, in which case there is at least one 
elementary ( d - l ) - c e l l  p'eOWkOV with g (p ' )=z r_ (p ) .  As a conse- 
quence, 

2d 

IGi\HA <~ IOWNOVI (8.4) 
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On the other hand, 

In/[ ~< I WI L - '  <~ (�89 ~-'/a 

by the fact that I WI ~< La/2. Using the strong isoperimetric inequality (see 
Appendix A) ,we  obtain that 

IH, I <~12-va laWl 

Combining (B.4) and (B.5), we get 

and hence 

2d 2d 2d 

l a W n a v I - -  Z Ia,l = ~ IG\H,I + Z Inel 
i = l  i = 1  i = l  

~< laWNaVI + 2 -1/~ laWI 

= (1 +2  -~/~) la w \av I  +2  -~/~ laWc~ avI 

1 + 2 -~/a 
IOW~ OVI ~< 1 - 2  - a / ~  la wNavI 

(B.5) 

Using the fact that 
laWA as 

d - - 2  

IOWil=laWiNOvl~_l + lag'inaVl~_~ + Z 10Wilk (U,7) 
k = l  

For a long contour Y, we use Lemma B.3 applied to the set if';, together 
with the fact that O if'; c 0 W~ to bound 

{'2'/a+ 1"~ {'2'/d+ 1"~ 
laff',c~aVla_, ~< \2, /~_ l J  laff',\aVla_, ~ \ 2 1 / a  lJ  IOw, NOvla_~ (B.8) 

14 As in Sect ion 3, a k -d imens iona l  cell c in supp  Y is only  c o u n t e d  if there is n o  (k + 1 )- 

d imens iona l  cell c '  in supp  Y with  e r c'. 

which implies (B.2). The bound (B.3) follows from (B.2). l 

Proof o f  Lornma 4.5. We start with the observation that 

IIII = IYla+ I Yla-1 + "" + IYI] (B.6a) 

where I YIk denotes the number of k-dimensional elementary cells in 14 Y, 
and similarly for the boundary 0 IV,- of a component W,. of Int Y, 

IOW, I =IOW, la_] + "" + IOW, l~ (B.6b) 

[OWic~ OVld_ l = ]aff'in c3Vla_ 1, we then decompose 
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For short contours Y, on the other hand, IO~enOWl ~ IOWAOVI, which 
implies (B.8) with a better constant. Therefore (B.8) is valid for both long 
and short contours. 

As a last step we observe that each cube c in supp Y can be shared 
by at most 2d elementary faces in ( O W l \ V )  w . . .  w (OW, \V ) ,  while each 
(d-1)-dimensional  elementary face in Y may be shared by the boundary 
of at most two different components of Int Y w Ext Y. Since all lower- 
dimensional elementary cells in Y belong to a unique component of 
Int Y w Ext Y, we get that 

d - 2  

~. IOWi\Ovla_, + ~ ~, IOW, Ik <.2dlrl (B.9) 
i = l  i = 1  k = l  

Combining (B.7) with (B.8) and (B.9) and the fact that 

Nov(Int Y) <~ ~ [Off'inOV[ (B.10) 
i = l  

we obtain the first two bounds of the lemma. 
In order to prove (4.4), we observe that V(Y) = supp Y w  W~ w .. .  w IV,, 

which in turn implies 0V(Y) c 0 supp Y w O W ~  w . . .  u OW,, and hence 

[OV( Y)I ~< 10 supp YI + IOW,[ + . . .  + IOW,,I 

Combined with the bound 10 supp Y[ ~< 2dlY], we obtain the remaining 
bound of Lemma 4.5. l 

A P P E N D I X  C. I N D U C T I V E  PROOF OF L E M M A  4.6 

In this appendix, we prove Lemma 4.6. Actually, we first prove the 
following Lemma C.1. In order to state the lemma, we recall the definition 
of f t , )  as the free energy of an auxiliary contour model with activities J q 

g ' (Yq)  if I v(Yq)[ <~ n 
K(m(Yq)  = (C.1) 

otherwise 

and define 

f(") = minfCq ") (C.2) 
q 

a~q~) =f(qm _ f  (C.3) 
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We also assign a number v(W) to each volume of the form (4.7a), 

v(W) = max IV( Y) I 
Y i n  W 

(C.4) 

where the maximum goes over all contours Y with supp Y c  IV. Obviously, 
v(Int Y) ~ IV( Y)I for all contours Y. In fact, 

v(Int Y) < IV( Y)I (C.5) 

due to the fact that dist( Y, Y)/> I if ~" is a contour in Int Y. 
Finally, we recall that for a volume W of the form (4.7a), Iit/I is used 

to denote the Euclidean volume of W, while for a contour Y and the 
boundary 0 W o f a  volume W, I Y[ and IOWl are used to denote the number 
of elementary cells in Y and 0 W, respectively [see Eqs. (B.6a) and (B.6b)]. 

L e m m a  C.1 .  Let 

e=e-~(l-(2c '+')Y)e ~+2 and &-= (or-  2) 2d (C.6) 
C3 

Then there is a constant eo, depending only on d and N, such that the 
following statements are true for all t < e o  and all n>~0, provided 
I V(Y)I ~n ,  v(W)~<n, and o~) 1: 

(i) IKq(Y)l<-e In. 

(if) Ifa~q '~ ]V(Y)[1/a<~g, then Xq(Y)= 1. 

(iii) If a{q ") I V( y)l~/a ~ ~, then K;(Y) = Kq( Y). 

(,) ] W] 1/a <~ ~, then Zq( W, h) = Z'q( IV, h ). (iv) If aq 

(v) [Zq(W, h)[ ~< e -:'€ ~ Io~ eY~No,~. 

Proof. We proceed by induction on n, first proving the lemma for 
n = 0 and then for any given n �9 N, assuming that it has been already 
proven for all integers smaller than n. 

Proof o f  Lemma C. 1 for n = O. For I V( Y)I = 0 we have X'q(Y) = 1 
and thus K~(Y) =Kq(Y)  =p(Y).  This makes (i)-(iii) trivial statements. 
Using (iii) for Iv(Y)I--0, we then conclude that Z q ( W , h ) = Z ' q ( W , h )  for 
v(W) = O. By (i), Zq( W, h) = Z'q( W, h) and thus the partition function can 
be analyzed by a convergent expansion yielding 

[Zq( W, h)l <~ e -~q ~ e ~ ,ov~ e(eq ,m - ~q(w)) ~ e-/~ e ~ ,o~ ey~Uo~(w) 

Observing that f(qo) ~> f(o), this concludes the proof of Lemma C.1 for n = O. 
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Proof  o f  Lomma C. 1(i) for IV( Y) I = n. Due to (C.5), v(Int Y) < n, 
and all contours ~" contributing to Z~(Int,, Y,h)  obey the condition 
IV( Y)I < n. This implies that IK'q( Y)I ~< el)q by the inductive assumption (i). 
As a consequence, the logarithm of Z'q(Int,, Y, h) can be analyzed by a 
convergent expansion, and 

[log Zq(Int., Y, h) + f~q"-1) lint,. YII ~< O(e) IO Intm I + 7rNov(Int . ,  Y) 

(C.7) 

Combining (C.7) with the induction assumption (v), we get 

i-~[ iZ,-(Int,,, Y,h) - ,,.-',li.t rl e2y~u0v(x.t r , eO(,)y_..laInt, rl 
I Zq(Int----~ Y, h) ~ e ,  

m 

~< e'~"-" lint Yl e(=C,y~+ o(~))In (C.8) 

where we have used Lemma 4.5 in the last step. Observing that 

le,. -f('m'-~)1 ~< O(e) (C.9a) 

which implies the bound 

i(eq _ eo ) _ a(q,-1)[ <~ O(e) (6.9b) 

we use the assumptions (3.7) and (3.11) to bound 

Ip(Y) eZ't r)l ~< -r  In errna,,tsupp Y) eleq-eo)lYla 

~< e-(~-)'~- o(,)) [ rt e-~ "-'~ [n~ (C.IO) 

[Yld is defined as the number of d-cells in Y and thus IV(Y)1 = Here 
lint ~ + I~d. Combining now (C.10) with (C.8), we obtain 

[Kq(Y)l<<.Xq(Y)e'(~"-I)lv(r)le -(~-~ (C.11) 

Without loss of generality, we may now assume that ;%q(Y) > 0 [ otherwise 
Kq(Y) = 0  and the statement (i) is trivial]. By the definition Of Xq(Y), this 
implies 

(f(q,,- t) _ f ( ~ -  1)) I V( Y)I ~< 1 +~( I YI ~< (1 + ct) I YI 

for all m ~ q. As a consequence, 

a(q "-~) IV(Y)I ~<(1 +ct)IYI (C.12) 



First-Order Phase Transitions 101 

provided Xq(Y) # 0. Combined with (C.11) and the fact that X'q(Y) ~< 1, this 
implies that 

IKq( Y)I ~< e- [~-  i -  o(,)-~-(i +2c,)y~] I rl (C.13) 

which yields the desired bound (i) for IV( Y)I =n.  

Proof  o f  Lemma C. l ( i i )  for k = IV( Y)[ <~ n and ^(") [ V( y)  ll/a <~ d. dq 
We just have proved that (i) us true for all contours Y with IV( Y)I ~< n. As 
a consequence, both ft,*) and f ~ )  may be analyzed by a convergent cluster 
expansion. On the other hand, 

_<ca 
IV( Y)I ca- ,)/a <~ l JOY( Y)I ~ 2d I YI (C.14) 

by the isoperimetric inequality and Lemma 4.5. Using this bound and the 
definition ~") o f f , . ,  one may easily see that all contours Y contributing to the 
cluster expansion of the difference f("~)-f("") obey the bound 

[Yl>~--~3(k+l)(a-l)/a>~ M/a=:no 

As a consequence, 

f(~) - f ~ ) [  ~< (Ke) "~ 

where K is a constant depending only on the dimension d and the number 
of phases N. Using the bound (C.14) for the second time and recalling that 
IV( Y)I = k, we get 

C3 
I f~  ) - f ~ ) l '  IV( Y)I ~< (Ke)"~ Y)I'/a~-~IYI = 0(1) no(Ke) "~ I YI ~< O(e) I YI 

(C.15) 

Combining (C.15) with the assumption'aq(n) lIT( Y)[ l/a< 0~ and the bound 
(C.14), we obtain the lower bound 

1II ]  (k )  ( k )  - -  (') IV(Y)I 0(~) I rl --[fq --fro ] IV(Y)I>~~ % 

>~ (0c-0~ 2~- o(e)) I r] 

= (2-o(c))IYI ~> 2 -  o(e) 
where, in the next to the last step, we used the definition of o~ [see (C.6)]. 
Combined with (4.16b) we obtain the equality X~(Y) = 1. 
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Proof o f  ternrna C. I(iii) and (iv). Given (ii) and the definitions of 
Kq(Y) and Zq( W, h), the statement is obvious. See ref. 6 for a formal proof 
using induction on the subvolumes of W and Int Y. 

Proof o f  Lomma C. l (v) .  We say a contour Y is small if 
-(") IV( Y)l~/d> ~. We then use the rela- ~") I V( Y)I l/d<~ ~, while it is large if s a q  

tion (4.8) to rewrite Zq( W, h) by splitting the set { YI ..... Yk} ext of external 
contours into {X1 ..... Xk,} w{Z1,... ,Zk,,}, where Z~ ..... Zk. are the small 
contours in {Y1 ..... Yk}r and X~ ..... Xk, are the large contours in 
{Y~ ..... Yk}r Note that for a fixed set {Xa,...,Xk,}, the sum over 
{Z~ ..... Zk. } runs over sets of mutually external small q-contours in 
Ext = k' W\U~= 1 V(X~). Resumming the small contours, we thus obtain 

/-,q t 1 2 , X [ ,  h) p(Xi) Zm(Intm Xi, h (C.16) 
{ Xl ,...,xk'}cxt i=  1 

Here the sum goes over sets of mutually external large contours in W and 
Zqma"(Ext, h) is obtained from Zq(Ext, h) by dropping all large external 
q-contours. 

Due to the inductive assumption (iii), Kq(Y) =Kq(Y) if Y is small. 
Since IKq(Y)I <~e Irl by (i), sm~, Zq (Ext, h) can be controlled by a convergent 
cluster expansion, and 

IZqmaU(Ext, h)[ ~< e-gin'" iExtl eO(,)Io Ext[ e~r (C.17) 

where fsr~U is the free energy of the contour model with activities -, q 

Kq ( Y ) =  ~(Y) if I V( Y)] <~ n and Y is small 
otherwise 

On the other hand, 

1-[ IZm(Int., X,., h)l ~< e-~"-  ') I~., x,u eO(~)Io Int Xil eYrNov(Int Xi) 
m 

by the induction assumption (v). Observing that the small contours 
contributing to the difference of f ~ )  and f ~ - 1 )  obey the bound 

d d l d  2d n ( - )/ >__nUd-- .no  - "  

while I v(x;)l  ~n ,  we may continue as in the proof of (C.15) to bound 

[ f ( . - l > f ( . ) [ .  lint Xil < l f ( " - 1 ) - f ( " ) l  �9 I V(XI)[ ~< 0(1) no(Key'~ O(e) 
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Since lint Xjl ~< O(1) IX, I by Lemma 4.5, we conclude that 

I-I [Zm(Int Xi,  h)[ ~< e-f"~ lint Xil eO(,)[xi[ errNav(Int Xi) 
m 
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(C.19) 

Combining (C.17) and (C.19) with the bounds 

and 

[p(Xi)l ~< e -~ Ix, I-eo [Xild e),rNov(supp Xi) 

~< e - t r -  o(,)] IX, t e - f")  IXila e)'rNov(supp Xi) (C.20) 

k' k' 
1O Extl ~< 1014/1 + ~ 10v(x,)l ~ laW1 + c3 ~ )x,I 

i=  1 i =  1 

(C.21) 

and the equality 

k' 

Nav(Ext) + 
i = 1  

[Nov(supp Xi)  + Nov(Int Xi)  ] = N a y ( W )  

we conclude that 

[Zq( W, h)l ~ e ~ to~ er~N~( w) e-":("' I ~  

k' 
[f,~mll ~.1] IExtl IXtl (C.22) x E e -  , - I-[ e-t~-~ 

{ Xl,,..,Xk'}ext i f  1 

Next, we bound the difference .,qfSmall --,qf('). In a first step, we use the 
isoperimetric inequality together with Lemma 4.5 and the definition of 
large contours to bound 

>1 >d 
IXl ~ c310v(X)l ~-c31 v(x)l(~- l ) / d > c l  2do~ 1 (C.23) c31 v(X)l'/~> lo := C~ a~q ) 

for all large contours X. Next, we observe that 

1 
f ( . )  __fsmall ~ (Ke)10 ~< 

�9 , - ' q  . . , q  
- -  lo log(Ke) 

(C.24) 

where K is a constant depending only on d and N. Recalling the condition 
0Z >/1, we get 

i f~q,,)- fsmall [ j q  ~ 1_ atq '~ (C.25) 

822/79/1-2-8 
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provided e is chosen small enough. Combining (C.22) with (C.25), we 
finally obtain 

k '  
[Zq( W,h)l <~ e~ er~c~ el~"~l~ ~ e--(a~q"~/2) lExtl H e-elx~l 

{ Xt,...,XId}r i= I 

(C.26) 

with 

~= (z - 1) (C.27) 

At this point we need the following Lemma C.2, which is a variant of a 
lemma first proven in ref. 29; see also ref. 3. 

L e m m a  C.2. Consider an arbitrary contour functional Rq(Y) >1 O, 
and let Zq be the partition function 

h 

2q(W)= ~ ['[ (Rq(Y,) e 'Y'') (C.28) 
{ Y,,..., r,} i=l 

Let gq be the corresponding free energy, and assume that Rq(Y) ~<gl~q, 
where g is small (depending on N and d). Then for any a~>-gq the 
following bound is true: 

e a IExtL I-I Kq(Yi) ~< e~ (C.29) 
{ YI,..., Yk} ext i 

where the sum goes over sets of mutually external q-contours in W. 

In order to apply the lemma, we define Kq(Y)=e  -elvl if Y is a large 
and .Kq(Y) = 0 otherwise. With this q-contour, choice, 

1 
0 ~ --Sq ~ (Ke) I~ <<, _ lo log(Ke) (C.30) 

where l0 is the constant from (C.23). As a consequence, 

--gq~<a :=a_~ (C.31) 
2 

provided e is small enough. Applying Lemma C.2 to the right-hand side of 
(C.26), and observing that ~:=e-*~<e,  we finally obtained the desired 
inequality 

[Zq( W, h)[ <~ e ~ Io wl ey~Nav( w~ e-~~ I wl 

This concludes the inductive proof of Lemma C.1. | 
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Proof of  Lemma C.2. The partition function Z ,  is defined in terms 
of the polymer model with activities K * ( Y ) = K q ( Y ) e  In. For g small 
enough, Zq can be controlled by a convergent cluster expansion and 

Ilog 2q(Int I0 + ,~q lint YII ~< 0(~) I0 Int YI ~< O(g) I YI 

On the other hand, II, V] = IExtl + E i ( l l n t  Y;I + I Y;la) if { Yl ..... Yk}ox, is a 
set of mutually external contours in IV. Combined with the fact that 
- - (~  ~ , ~ q  = O ( ~ ) ,  w e  obtain 

k 
~. e - - a  IExtl ~-[ g q ( Y , )  

{ YI ,..-, Yk} ext i =  1 

k 
~<e~'l~ ~ 1-[ Kq(Yi) e -gq(lInt YiI+IYild) 

{ YI,..., Yk}~t i = 1  

k 
<~ e.% lwl ~, I I  Kq( Yi) 2q(Int Y~) e~ lr'l-gqlr'la 

{ YI,,.., Yk}~t i=  1 

k 

<<- e~q'wl ~ I-I Rq( Y~) e'r'l Zq( Int Yi) 
{ Yl,...,Yk}ext i = 1  

= e~q ,wl ~q(W) ~ e ~ 10w~ 

Proof o f  Lemma 4-6. Lemma 4.6(i)-(iv) follows from Lemma C.1 and 
the fact that f =  lim, _ o~ f(") and aq = lim . . . .  a~q "1. 

In order to prove the statement (v), we extract the factor 

max e--(a~n)/4) IEXt[e -- (r/4) ~,i IXil 
{x~,...,xe} 

~< max e-{a~q")/4) IExtl e-(T/4c3)  ~ IOV(Xi)l 
{x~,...,xe} 

~< max e -  (a~n)/4) I WkU[ e -  (r/4C3) IOUI 
U = W  

from the right-hand side of (C.26), and bound the remaining sum as before. 
Taking the limit n ~ ~ in the resulting bound, this yields 

[Zq( W, h)l < e ~'~NaVt w~ e C~ ~ w~q e - f b l * q  

x max e-(aq/4)[w\u[ e 1ouI 
U = W  

(C.32) 
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We conclude, with the help of the isoperimetric inequality, that 

]Zq( W, h)] ~< e ~'~N~'~ w~ et o~> + ol,-3,/,>] la~ e - : l  

x m a x  e -(aq/4} i w \ u i - ( 2 d r / 4 C 3 )  IUI a/(d-l) 
U c W  

= eYrNov( rio e [ o(e} + 0(e-~r lOW] e - f l  w1 

x max{e -(aq/4) I~, e-t2dr lgq"/c"-"} (C.33) 

where we used the fact that the maximum over U is obtained for either 
U =  W o r  U = ~ .  

Observing that 2dlVI died- ~ =  laVI and that Nov(V) can be bounded 
by 10VI, we see that the bound (C.33) implies Lemma 4.6(v). | 

Proof of the Bound (4.28). Due to the bound (C.12), we have 
~"- ~) I V( I01 ~< ( 1 + ~) I Y[ if Xq(Y) ~ 0. Using the strategy which was used aq 

to prove (C.15), we replace a ~'- ~) by aq ,  concluding that Xq(Y) ~ 0 implies --q 

aqlV(Y)l<~[l+O(e)+~] IYI. | 

APPENDIX D. PROOF OF L E M M A  4.7 

We start with a combinatoric lemma that will be used throughout this 
appendix. 

l . e m m a  D.1. Let ko be a positive integer and let G(h) be a function 
which satisfies the bounds 

ff~k G(h) <~ 21kl 

for all multi-indices k with 1 ~< [k[ ~ k o and some 2 > O. Then 

dThk e ac/'l <<, Ikl! ~lklea(/,) 

for all multi-indices k with 1 ~< [k[ ~< ko. 

Proof. Observing that 

d k 
~ k  eG(h~= Hk(h) eGIh) 

where Hk(h ) is a polynomial of degree [kl in the derivatives of G, we 
immediately obtain the lemma by induction on Ikl. | 
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Keeping the notation of Appendix C, we now prove the following 
lemma, which contains statements (i)-(iii) of Lemma 4.7. 

Lemma D.2. There is a constant K <  0% depending only on N, d, 
and the constants introduced in (3.8), (3.9), and (4.16), such that the 
following statements are true provided e < eo, 0Z >/1, and n/> 0: 

(i) For IV(Y)l ~<n and h o e q / o n e  has 

ff--•Kq(Y) h=ho~< (Ke) IYI (D.1) 

provided 1 ~< tkl ~< 6. 

(ii) For v(/4/) ~< n and ho ~ qg one has 

d , ,  h = h0 logZ'q(W,h) ~< [ CIokl + O(e)] IWl (D.2) 

provided I ~< Ikl ~< 6. 

(iii) For o(W) ~< n and ho ~ q /one  has 

ff~k Zq( W, h) h Ikl! { [ C0 + O(e) q I WI } ikl e - f l  wl eO(,)lawl e,,~ca,,( w~ 
= h0  

(D.3) 

provided 1 ~< Ikl ~< 6. 

Proof. As in the proof of Lemma C.1, we proceed by induction on n. 

Proof of  Lemma D.2 for n = 0. For I V( Y) I = 0, Kq(Y) = Kq(Y) = 
p(Y), which makes (i) a trivial statement. As a consequence, the left- 
hand side of (D.2) can be analyzed by a convergent cluster expansion, 
leading immediately to the bound (D.2) for v(/4/) =0.  Bounding finally 
[ Ctoki + O(e)] IWI by { [ Co + O(e)] I wI} ~k~ and observing that Zq( W, h) = 
Z'q( W, h) if v( 140 = 0, we obtain (iii) with the help of Lemma D.1. 

Proof of  Lomma D.2(i) for IV( Y) I = n. Using the assumptions (3.8) 
and (3.9) together with Lemma D.1, we can easily generalize the bound 
(C.10) to derivatives, giving 

d~k [P(Y) e eq{r)] ~< Ikl! (2C0 IYi) Ikl e -t '-*' '-~ t~ e,qlrl~ (D.4) 
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In a similar way, the bound (C.8) can be generalized to derivatives, using 
the inductive assumptions (ii) and (iii) together with Lemma D.1 and 
Lemma 4.5. This gives 

d~k[ ~ Z.,(Int., Y, 

~< Ikl! {[2Co+ O(e)] lint YI} Ikl e.,l~., m e[2C,~'r+O(~)llrl (D.5) 

Using finally the possibility to analyze the derivatives of f~.",-1)(h) be a 
convergent expansion due to the inductive assumption (i), we bound 

c':' dh k <~ + O(e) <~ [ Co + O(e) 

As a consequence, 

' }9 --<[CI I g ( ~ 1 3  jk~ (D.6)  

for all multi-indices of order Ikl -%< 6. Here Cl is a constant that depends on 
N and the constants introduced in (3.8), (3.9), and (4.16). Combining 
(D.4)-(D.6) and bounding terms of the form O(1)1 V( Y)[ and O(1)1 Y] by 
e ~ we obtain the bound (D.1). 

Proof o f  Lemrna D.2(ii) for v(W) = n. We just have proved that (i) 
is true for all contours Y with I V( Y) I -%< n. As a consequence the deivatives 
of log Z'q( W, h) can be analyzed by a convergent cluster expansion. The 
bound (D.2) immediately follows. 

Proof o f  Lemma D.2(iii) for v(W) =n.  We define: a contour Y 
is small if aq(ho)IV(y)I1/d<<,~, while a contour Y is called large if 
aq(ho) lV( Y)l i/a>~. As in Appendix C, we then rewrite Zq( W, h) as 

zq(  w ,  h) = ~ . . . .  " ' -  ~ h) ,]-1 Lq text, p(Xi) Z,.(Int,. X;, h) (D.7) 
{ x~ ...., x . }  = ,  = 

where the sum goes over sets of mutually external large contours in W and 
s ma l l  Zq (Ext, h) is obtained from Zq(Ext, h) by dropping all large external 

q-contours. 
Due to Lemma 4.6, Kq(Y) = Kq(Y) if Y is small and h = h 0. Combining 

this with the bound (4.13) and the inductive assumption (D.I), we con- 
clude that 

~hk Kq( Y)l <~ (2Ke) '~ (D.8) 
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is a certain neighborhood ~ of h0. As a consequence, the derivatives of 
log ~m~, Zq (Ext, h) can be controlled by a convergent cluster expansion, and 

d* ' h) log z~ma"(Ext, <~ [CIo kl + O(e)] IExtl ~< {[Co + O(e)] IExtl} Ikl 

(D.9) 

provided h e q/o. Combining (D.9) with the bound 

_f~m,aU IExtl eO(~)Io Extl  IZqm~lJ(Ext, ho) I ~< e ~ e ~'~Naz~Ext) (D.10 

where fsma]] is the free energy of the contour model with activities -, q 

~m~ll fKq(Y) if Yis small, 
Kq (]I)=)O if Yislarge (D.11 

we obtain 

d~ h) h=ho 
smal l  Zq (Ext, 

~< Ikl! { [Co+ O(e)] IExtl} Ikl e-g~" IExtl eO~,~la Extl er~vav(Ext) (D,12 

On the other hand, 

dThkp(](i) <~ ]k]! (Co ]Xi[) Ikl e -[~-~ e-flXila+Nov(suppxi) 

~< Ikl! CIo uM e -t~-Ikve-~ Ixil e-YlXila+Nov(suppx,) (D.13 

Combining (D.7) with the inductive assumption (D.3) and the bounds 
(D.12) and (D.13), we may continue as in Appendix C to get 

kd_~ h = ho Zq(W,h) ~<lkl! { [Co+ O(e)] IWI}lkle--rlWle~'~'v~v("~ e ~176 

x ~ e-Caq/2) IExtl I~I e - '  Ix~l (D.14) 
{ a'~,..., x , }  r i =  1 

where now 

= r - 6/e - 1 (D.15) 

Note the extra term 6/e with respect to (C.27), which comes from the term 
[kl/e in (C.13) (recall that we assumed Ikl ~< 6). 
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Given the bound (D.14), the proof of (D.3) for v ( W ) = n  now 
follows using Lemma C.2 from Appendix C. This concludes the proof of 
Lemma D.2. I 

Proof of  Lernrna 4.7(v).  Starting from (D.14), statement (iv) of 
Lemma 4.7 is obtained in the same way as statement (v) of Lemma 4.6 was 
obtained in Appendix C. 1 

As a corollary of this proof, one obtains the analogs of (C.32) and 
(C.33) for derivatives, namely 

and 

ff--•hk Zq( h =h0 
W, h) 

Ikl! { E C0 + O(e)q I WI } I~1 e~.~Nav~ etO~,)+ 0(e-3"14)] la,q'q e- f t ,1  

x max e -~aq/a) IW\UI e-(r/4C3)lauI (D.16) 
U =  I1/ 

~--~hk Zq( h = I,o 
W, h ) 

~< Ikt! { [Co + O(e)] I WI} Ikt er-Vo,.r w~ el:Or or tom e-flr.Vl 

x max{e--(aq/4) II'V], e--(2d,/4c3)IW1 all'- "} (D.17) 

APPENDIX E. PROOF OF L E M M A S  5.1 AND 5.2 

Proof of  Lemrna 5. 7. Observing that all components W of Int ~~ YA 
obey the bound IWl ~maxr~r~  IV(Y)l, we see that the statement (i) of 
Lemma 5.1 immediately follows from Lemma 4.6. 

In order to prove (ii), we first note that for YA = { Y1 ..... yn}, 

P(YA) exp[Eq(supp YA) 

= A( Yl ..... Yn) I-I P(Y,) exp[Eq( r ;)]  
i = 1  

x YI exp[Eq(Intm Yac~suppA) -Em( In tm  Yac~suppA)] (E.1) 
m # q  

which implies that 

IP(YA) exp[Eq(supp YA)]I 

~< CA exp [ - (r - yr) I YA [ ] exp [ 2~zNo(Int YA c~ supp A ) ] 

xexp[(eq-eo)( lsupp }'Aid+ lint YAC~suppAId)] (E.2) 
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Next we use Lemma 4.6 to bound 

I~ I / ' ( I n t ~ '  YA,h) t (o) ~.euql Int(~ YAI+O(~)I ~9Intr176 Y.d e2)'rNatlnt I~ Y~) (E.3) 
,,= l I Zq(Intm YA, h) 

Bounding eq - e o <~ aq + O(e), observing that 

I Int(~ Y~I + lint YA c~ supp al = lint YAI (E.4) 

and bounding 

18 Int (~ Yal ~< I~ Int YAI + l0 supp AI ~< l0 Int YAI + 2d lsupp AI 

we get the bound 

IKq( YA)[ ~< CAe -t~-r~-~ IrAI e2)'rN~(Int YA) e~q I v( r~)l +o(,)[supp A] (E.5) 

Bounding now Na(Int YA) by C~ I Ya[, and observing that I-[r~ r~ Zq( lO ~ 0 
implies that aqlV( YA)] ~ [~ + 1 + O(e)]lY~[ due to the bound (4.26), we 
finally get 

[Kq(Ya)l~CAe-~[I-(l+2c~)Y]lrAe[l+~176 ~162 (E.6) 

which implies the bound (5.15). 
We are left with the proof of (iii). By (E.I), Lemma D.1, and the 

assumptions (3.9) and (3.25b), 

d~ P(YA) exp[Eq(supp YA)] 

~< Ik!l Ca Ctokl(lsupp Yal + I YAI + 2 lint IrA n supp A l)lkl 

x exp[ --(r -- yz) I Y~I ] exp[2~,zNa(Int YAn supp A)] 

xexp[(eq--eo)(Isupp Yald+ lint Y~ c~supp AId)] (E.7) 

On the other hand, 

dk N Zm(int~) YA,h) 

Zq(Int,, 

~< { [2Co + O(~)] lint (~ YAI} Ikl e~ I~,~ ~~ r~l 

• eO(e)lo Int (~ YAJ e2)'rNa(Int r176 Y,4) (E.8) 
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by Lemma 4.7, while 

I-I ~< C, Y~ IV(r)l (E.9) 
Y e  YA Y e  YA 

by (D.6). 
Combining the bounds (E.7)-(E.9), and bounding 

Co(lsupp YAI + I YAI + 2 lint YA r~ supp A I ) 

+[2Co+O(e)] lint (~ YAI+C, ~ IV(Y)I 
Ye Y,# 

<~ColsuppAl+[2Co+O(e)](IYAl+llnt YAI)+C1 ~ IV(Y)I 
Y ~ Y,~ 

~< Isupp AI e ~ (E.10) 

we may then continue as in the proof of (E.6) to obtain te bound (5.16). II 

Proof of Lomma 5.2. We start from the representation (5.4) and use 
the assumptions (3.25) and (3.11) to bound 

IP( YA)[ <'~ CA exp[ - r i Y A l -  Eo(supp YA)] exp[ --Eo(Int YA n s u p p  A)] 

• exp [ - Eq(Ext YA c~ supp A ) ] 

~< C A exp[TrNa(supp YA)] exp{ - - [ r -  O(e)] I YAI} 
x exp[O(e) Isupp All exp( - f l s u p p  YAI) 

x exp( --aq IExt YA c~ supp At) (E.11 ) 

Lemma 4.6 to bound 

Z,,(Int~) YA, h)[ 
rn~  l 

~< e - f l i n t ( ~  Y.~I eO(~)(I Y~I + Isupp AI) e) 'rNa(Intt~ Y.*) (E.12) 

and the inequality (C.32) in conjunction with the estimate 

l0 Ext (~ YAI ~< l0 supp AI + IOVl + lOV( YA)I ~< 2d Isupp AI + lavI + c3 I YAI 

to bound 

[Zq(Ext(~ Ya, h)l <~ e ~ + Isupp AD e),,Na(Ext~~ YA) e--flExt(~ YAI 

• eO(g) I Yal max e--(aq/4) IExt (~ YA\UI e - ( r / 4 c 3 )  laUI 
u ~  Ext {0) YA 

(E.13) 
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where g is the constant introduced in Lemma 5.2. Combining the bounds 
(E.11)-(E.13) with (5.4), we obtain 

[Zq(A I V,  h)l ~< CAe ~ [supp A[ eEr,~+ ore)] lavl e-flZl 

x ~_ e -~r-l)lral m a x  e-faq/4jlExt YA\Ul e -(r/4CDlOUI 
U ~ Ext (01 YA Y,~ 

(E.14) 

where we used the bounds 

aq IExt c~ sup AI + (aq/4) IExt t~ YA\UI ~ (aq/4) IExt YA\U[ 

and Na(V) ~< 10vI. Extracting the factor 

max e-(rm I YAI max e-(aq/4) text YA\U I e-(r/4c3) ~au[ 
Y,t U = Ext ~0~ YA 

~< m a x  e - ( r / 4 c 3 )  lOP'( Y~)l m a x  e --(aq/4) l[ V\V( YA)]\UI e - ( r / 4 C 3 )  Ic~UI 
YA U c Ext t0) YA 

~< max e -~oq/a) ImSl e-tr/4c3) ItgSI 
S c V  

~< max{ e-~Oq/4)it1, e-~/4c3~ I~} 

from the right-hand side of (E.14), we are left with a sum ZrA e-I3r/4-1)IY~l 
which we bound as follows: 

E e-(3r/4-1)lYAl~ X ~ e - t a r / 4 ) -  I) I ~ ~< e ~  Isupp AI 

YA n 0 Y: vl Y) c~ supp A ~ O 

Putting everything together, we obtain the bound (i) of Lemma 5.2. 
In order to prove (ii); we generalize (E.11)-(E.13) to derivatives. In 

(E.11), these derivatives produce an extra factor, 

Ca Ikl! (Co Isupp YAI + Co Isupp A\supp YAI) Mkl 

CA [k[! (2Co [supp A[ + Co [YA[) Mkl 

~< CA [k[! (Co [supp A[) Ikl e ~ Ir.d 

while in (E.12) and (E.13), they produce factors 

[kl! { [ Co + O(e)] lint t~ YAI} Ikf 

and 

Ikl! { l" Co + O(~) ] I Ext ~~ Y,~ I} Ikl 
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On the right-hand side of  (E.14), this leads to an extra factor 

CA Ikl! { [ C o +  O(E)] IVl} Ikl e ~ 

Observing that the sum Z rA e - [  3r/4--O(1)] IYAI can be bounded by e ~ isupp a l 

as well, we obtain Lemma 5.2(ii). I 

ACKNOWLEDGMENTS 

C.B. is a DFG-Heisenberg Fellow. This work is partly supported by 
grants GA(~R 202/93/0499 and G A U K  376. 

REFERENCES 

I. K. Binder, Finite size scaling analysis of Ising model block distribution functions, Z. Phys. 
B 43:119-140 ( 1981 ). 

2. C. Borgs, Finite-size scaling for Potts models in long cylinders, Nucl. Phys. B 384:605-645 
(1992). 

3. C. Borgs and J. Imbrie, A unified approach to phase diagrams in field theory and statisti- 
cal mechanics, Commun. Math. Phys. 123:305-328 (1989). 

4. C. Borgs and J. Imbrie, Finite-size scaling and surface tension from effective one dimen- 
sional systems, Commun. Math. Phys. 145:235-280 (1992). 

5. C. Borgs and J. Imbrie, Crossover finite-size scaling at first-order transitions, J. Stat. Phys. 
69:487-537 (1992). 

6. C. Borgs and R. Koteck~,, A rigorous theory of finite-size scaling at first-order phase 
transitions, J. Star. Phys. 61:79-119 (1990). 

7. C. Borgs and R. Koteck~,, Finite-size effects at asymmetric first-order phase transitions, 
Phys. Rev. Lett. 68:1734--1737 (1992). 

8. C. Borgs, R. Koteck~,, and S. Miracle-Sol6, Finite-size scaling for Potts models, J. Stat. 
Phys. 62:529-552 ( 1991 ). 

9. K. Binder and D. P. Landau, Finite-size scaling at first-order phase transitions, Phys. Rev. 
B 30:1477-1485 (1984). 

10. H. W. Bl6te and M. P. Nightingale, Critical behavior of the two dimensional Potts model 
with a continuous number of states; a finite-size scaling analysis, Physica 112A:405-465 
(1981). 

11. C. Borgs and R. Waxier, First order phase transitions in unbounded spin systems I. 
Construction of the phase diagram, Commun. Math. Phys. 126:291-324 (1989). 

12. C. Borgs and R. Waxier, First order phase transitions in unbounded spin systems II. 
Completeness of the phase diagram, Commun. Math. Phys. 126:483-500 (1990). 

13. M. S. S. Challa, D. P. Landau, and K. Binder, Finite-size effects at temperature-driven 
first-order transitions, Phys. Rev. B 34:1841-1852 (1986). 

14. H. Federer, Geometric Measure Theol'), (Springer-Verlag, Heidelberg, 1969). 
15. M. E. Fisher, In Critical Phenomena, M. S. Green, ed. (Academic Press, New York, 1971 ). 
16. M. E. Fisher and M. N. Barber, Scaling theory for f'mite-size effects in the critical region, 

Phys. Rev. Lett. 28:1516-1519 (1972). 
17. M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic 

and finite systems, Phys. Rev. B 26:2507-2513 (1982). 
18. A. E. Ferdinand and M. E. Fisher, Bounded and inhomogeneous Ising models I. Specific 

heat anomaly of a finite lattice, Phys. Rev. 185:832-846 (1969). 



First-Order Phase Transitions 115 

19. P. HolickS,, R. Koteck~,, and M. Zahradnik, Rigid interfaces for lattice models at low tem- 
peratures, J. Star. Phys. 50:755-812 (1988). 

20. P. HolickS,, R. KoteckS,, and M. Zahradnik, Phase diagrams of horizontaly invariant 
Gibbs states for the Ising type models, in preparation. 

21. Y. Imry, Finite-size rounding of a first-order phase transition, Phys. Rev. B 21:2042-2043 
(1980). 

22. V. Privman and M. E. Fisher, Finite-size effects at first-order transitions, J. Star. Phys. 
33:385-417 (1983). 

23. V. Privman and J. Rudnick, Nonsymmetric first-order transitions: Finite-size scaling and 
tests for infinite-range models, J. Stat. Phys. 60:551-560 (1990). 

24. S. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems, Theor. Math. 
Phys. 25:1185-1192 (1975). 

25. S. Pirogov and Ya. G. Sinai, Phase diagrams of classical lattice systems, Theor. Math. 
Phys. 26:39-49 (1976). 

26. Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results (Pergamon Press, Oxford, 
1982). 

27. E. Seiler, Gauge Theories as a Problem of  Constructive Quantum Field Theory and Statisti- 
cal Mechanics (Springer-Verlag, Berlin, 1982). 

28. J. E. Taylor, Some crystalline variational techniques and results, Ast~risque 154-155: 
307-320 (1987). 

29. M. Zahradnik, An alternate version of Pigorov-Sinai theory, Commun. Math. Phys. 
93:559-581 (1984). 


